Natural hazards are significant problems that every year cause importa translation - Natural hazards are significant problems that every year cause importa Indonesian how to say

Natural hazards are significant pro

Natural hazards are significant problems that every year cause important loses around the world. A good prediction
of the behavior of the hazards is a crucial issue to fight against them and to minimize the damages. The models that
represent these phenomena need several input parameters and in many cases, such parameters are difficult to know
or even to estimate in a real scenario. So, a methodology based on the DDDAS paradigm was developed to calibrate
the input parameters according to real observations of the behavior and evolution of the hazard. Such calibrated
parameters are then used to provide an improved prediction for the next time interval. This methodology was tested
on Forest Fire Propagation Prediction with significant results. The developed methodology takes the fire behavior
and propagation during a time interval and then searches for the values of the input parameters that best reproduce
the propagation of the fire during that interval. Several Artificial Intelligence (AI) methods were applied to carry out
this search as fast as possible. The values of the parameters that best reproduce the behavior of the fire were then
used as input parameters to predict the propagation during the next time interval. These parameters were considered
constant during both time intervals and a single value for each parameter was used for the calibrating process and for
the prediction stage. This methodology fits on the DDDAS paradigm since the prediction is dynamically driven by
the system evolution. However, there are several parameters that are not constant through time, but they may vary
dynamically. In the case of forest fires, a typical example is the wind. In some cases, when the time interval is short an
average value for the wind can be a feasible value, but when the time interval is longer, in most cases, a single value
cannot represent the variability of the wind. We can estimate wind behavior applying some complementary model. In
this work, we are going a step further considering the dynamic behavior of such parameters. We propose an extension
of the existing prediction scheme that takes into account the dynamically changing parameters by coupling a weather
prediction system on a DDDAS Forest Fire Propagation Prediction system.
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
Natural hazards are significant problems that every year cause important loses around the world. A good predictionof the behavior of the hazards is a crucial issue to fight against them and to minimize the damages. The models thatrepresent these phenomena need several input parameters and in many cases, such parameters are difficult to knowor even to estimate in a real scenario. So, a methodology based on the DDDAS paradigm was developed to calibratethe input parameters according to real observations of the behavior and evolution of the hazard. Such calibratedparameters are then used to provide an improved prediction for the next time interval. This methodology was testedon Forest Fire Propagation Prediction with significant results. The developed methodology takes the fire behaviorand propagation during a time interval and then searches for the values of the input parameters that best reproducethe propagation of the fire during that interval. Several Artificial Intelligence (AI) methods were applied to carry outthis search as fast as possible. The values of the parameters that best reproduce the behavior of the fire were thenused as input parameters to predict the propagation during the next time interval. These parameters were consideredconstant during both time intervals and a single value for each parameter was used for the calibrating process and forthe prediction stage. This methodology fits on the DDDAS paradigm since the prediction is dynamically driven bythe system evolution. However, there are several parameters that are not constant through time, but they may varydynamically. In the case of forest fires, a typical example is the wind. In some cases, when the time interval is short anaverage value for the wind can be a feasible value, but when the time interval is longer, in most cases, a single valuecannot represent the variability of the wind. We can estimate wind behavior applying some complementary model. Inthis work, we are going a step further considering the dynamic behavior of such parameters. We propose an extensionof the existing prediction scheme that takes into account the dynamically changing parameters by coupling a weatherprediction system on a DDDAS Forest Fire Propagation Prediction system.
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
Bencana alam adalah masalah penting yang setiap tahun penyebab penting kehilangan seluruh dunia. Sebuah prediksi yang baik
dari perilaku bahaya adalah masalah penting untuk melawan mereka dan untuk meminimalkan kerusakan. Model-model yang
mewakili fenomena ini perlu beberapa parameter input dan dalam banyak kasus, parameter tersebut sulit untuk mengetahui
atau bahkan untuk memperkirakan dalam skenario nyata. Jadi, metodologi berdasarkan paradigma DDDAS dikembangkan untuk mengkalibrasi
parameter masukan menurut pengamatan nyata dari perilaku dan evolusi bahaya. Dikalibrasi seperti
parameter yang kemudian digunakan untuk memberikan prediksi ditingkatkan untuk interval waktu berikutnya. Metodologi ini telah diuji
pada Kebakaran Hutan Dakwah Prediksi dengan hasil yang signifikan. Metodologi yang dikembangkan mengambil perilaku api
dan propagasi selama interval waktu dan kemudian mencari nilai-nilai parameter masukan yang terbaik mereproduksi
perambatan api selama interval itu. Beberapa metode Artificial Intelligence (AI) yang diterapkan untuk melaksanakan
pencarian ini secepat mungkin. Nilai-nilai parameter yang terbaik mereproduksi perilaku api kemudian
digunakan sebagai parameter masukan untuk memprediksi propagasi selama interval waktu berikutnya. Parameter ini dianggap
konstan selama kedua interval waktu dan nilai tunggal untuk setiap parameter yang digunakan untuk proses kalibrasi dan untuk
tahap prediksi. Metodologi ini cocok pada paradigma DDDAS sejak prediksi yang dinamis didorong oleh
sistem evolusi. Namun, ada beberapa parameter yang tidak konstan melalui waktu, tetapi mereka dapat bervariasi
secara dinamis. Dalam kasus kebakaran hutan, satu contoh adalah angin. Dalam beberapa kasus, ketika interval waktunya singkat merupakan
nilai rata-rata untuk angin bisa menjadi nilai layak, tapi ketika interval waktu yang lebih lama, dalam banyak kasus, nilai tunggal
tidak dapat mewakili variabilitas angin. Kita bisa memperkirakan perilaku angin menerapkan beberapa model yang saling melengkapi. Dalam
karya ini, kita akan langkah lebih lanjut mengingat perilaku dinamis dari parameter tersebut. Kami mengusulkan perpanjangan
dari skema prediksi yang ada yang memperhitungkan parameter dinamis berubah dengan kopling cuaca
sistem prediksi pada sistem Prediksi DDDAS Kebakaran Hutan Propagasi.
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: