The basic procedure requires the synthesis of a short DNA primer. This synthetic primer contains the desired mutation and is complementary to the template DNA around the mutation site so it can hybridize with the DNA in the gene of interest. The mutation may be a single base change (a point mutation), multiple base changes, deletion, or insertion. The single-strand primer is then extended using a DNA polymerase, which copies the rest of the gene. The gene thus copied contains the mutated site, and is then introduced into a host cell as a vector and cloned. Finally, mutants are selected by DNA sequencing to check that they contain the desired mutation.
The original method using single-primer extension was inefficient due to a low yield of mutants. This resulting mixture contains both the original unmutated template as well as the mutant strand, producing a mixed population of mutant and non-mutant progenies. Furthermore the template used is methylated while the mutant strand is unmethylated, and the mutants may be counter-selected due to presence of mismatch repair system that favors the methylated template DNA, resulting in fewer mutants. Many approaches have since been developed to improve the efficiency of mutagenesis.