Abstract We conducted laboratory and greenhouse experimentsto determin translation - Abstract We conducted laboratory and greenhouse experimentsto determin Indonesian how to say

Abstract We conducted laboratory an

Abstract We conducted laboratory and greenhouse experiments
to determine whether charcoal derived from the
ponderosa pine/Douglas-fir ecosystem may influence soil
solution chemistry and growth of Koeleria macrantha, a
perennial grass that thrives after fire. In our first experiment,
we incubated forest soils with a factorial combination
of Douglas-fir wood charcoal generated at 350°C and
extracts of Arctostaphylos uva-ursi with and without the
addition of glycine as a labile N source. These results
showed that charcoal increased N mineralization and
nitrification when glycine was added, but reduced N
mineralization and nitrification without the addition of
glycine. Charcoal significantly reduced the solution concentration
of soluble phenols from litter extracts, but may
have contributed bioavailable C to the soil that resulted in
N immobilization in the no-glycine trial. In our second
experiment, we grew K. macrantha in soil amended with
charcoal made at 350°C from ponderosa pine and Douglasfir
bark. Growth of K. macrantha was significantly
diminished by both of these charcoal types relative to the
control. In our third experiment, we grew K. macrantha in
soil amended with six concentrations (0, 0.5, 1, 2, 5, and
10%) of charcoal collected from a wildfire. The data
showed increasing growth of K. macrantha with charcoal
addition, suggesting some fundamental differences between
laboratory-generated charcoal and wildfire-produced charcoal.
Furthermore, they suggest a need for a better
understanding of how temperature and substrate influence
the chemical properties of charcoal.
Keywords Charcoal . Soil solution chemistry.
Douglas-fir and ponderosa pine ecosystems
Introduction
It is well-established that fire alters N cycling in the
ponderosa pine/Douglas-fir (Pinus ponderosa/Psuedotsuga
menziesii) ecosystem (Neary et al. 1999; Hart et al. 2005).
Nitrogen availability has been shown to increase immediately
after fire (Covington and Sackett 1990, 1992; DeLuca
and Zouhar 2000) and may remain elevated on the scale of
months to years as a result of enhanced mineralization
(Covington and Sackett 1990, 1992; Monleon et al. 1997;
Kaye and Hart 1998; Gundale et al. 2005). Numerous
processes that increase N mineralization after fire have been
identified, including improved substrate quality (White
1991, 1994; Fernandez et al. 1997; Pietikainen et al.
2000a), death of roots and soil organisms resulting in a
large labile organic N pool (DeBano et al. 1979; Dunn et al.
1979; Diaz-Ravina et al. 1996; Neary et al. 1999), and a
reduction in C to N ratios due to preferential loss of C
during combustion (Gundale et al. 2005). A potentially
overlooked factor that may also enhance N cycling after fire
is the addition of charcoal to soils.
Several recent studies have shown that charcoal has the
potential to greatly enhance soil fertility. Amazonian forest
soils amended centuries ago with charcoal and manure still
maintain some of the highest biodiversity and productivity
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
Abstrak kami melakukan percobaan laboratorium dan rumah kacauntuk menentukan apakah arang berasal dariekosistem Ponderosa pine/Douglas-fir dapat mempengaruhi tanahsolusi kimia dan pertumbuhan Koeleria macrantha,rumput abadi yang tumbuh subur setelah api. Dalam percobaan pertama,kami diinkubasi hutan tanah dengan kombinasi faktorialDouglas-Fir kayu arang yang dihasilkan pada 350° C danekstrak Arctostaphylos uva-ursi dengan dan tanpaPenambahan glisin sebagai sumber N labil. Hasil inimenunjukkan bahwa arang meningkat N mineralisasi dannitrifikasi ketika glisin ditambahkan, tetapi berkurang Nmineralisasi dan nitrifikasi tanpa penambahanGlycine. Arang secara signifikan mengurangi konsentrasi solusilarut fenol dari ekstrak sampah, tetapi mungkintelah berkontribusi secara biologis C ke dalam tanah yang mengakibatkanN Imobilisasi dalam sidang no-glisin. Kedua kamipercobaan, kami tumbuh K. macrantha di tanah yang telah diubah denganarang yang dibuat pada 350° C dari ponderosa pinus dan Douglasfirkulit. Pertumbuhan K. macrantha ini meningkatberkurang oleh kedua jenis arang ini relatifkontrol. Dalam percobaan kami ketiga, kita tumbuh K. macrantha diTanah diamandemen dengan enam konsentrasi (0, 0,5, 1, 2, 5, dan10%) arang yang dikumpulkan dari kebakaran. Datamenunjukkan peningkatan pertumbuhan K. macrantha dengan arangSelain itu, menyarankan beberapa perbedaan mendasar antaralaboratorium yang dihasilkan arang dan arang api yang dihasilkan.Selain itu, mereka menyarankan suatu kebutuhan untuk yang lebih baikpemahaman tentang bagaimana pengaruh suhu dan substratsifat-sifat kimiawi arang.Arang kata kunci. Tanah solusi kimia.Douglas-fir dan pinus ponderosa ekosistemPengenalanIni mapan bahwa api mengubah N Bersepeda diPonderosa pine/Douglas-fir (Pinus ponderosa/Psuedotsugamenziesii) ekosistem (Neary et al. 1999; Hart et al. 2005).Ketersediaan nitrogen telah ditunjukkan untuk meningkatkan segerasetelah api (Covington dan Sackett 1990, 1992; DeLucadan Zouhar 2000) dan akan tetap ditinggikan di skalabulan sampai tahun sebagai akibat dari peningkatan mineralisasi(Covington dan Sackett 1990, 1992; Monleon et al. 1997;Kaye dan Hart 1998; Gundale et al. 2005). Banyakproses yang meningkatkan N mineralisasi setelah api telahdiidentifikasi, termasuk peningkatan substrat kualitas (putih1991, 1994; Fernandez et al. 1997; Pietikainen et al.2000a), kematian akar dan organisme tanah yang mengakibatkanlabil organik N kolam besar (DeBano et al. 1979; Dunn et al.1979; Diaz-Ravina et al, 1996; Neary et al. 1999), danpengurangan C N rasio akibat kehilangan preferensial cselama pembakaran (Gundale et al. 2005). A berpotensidiabaikan faktor yang dapat meningkatkan N Bersepeda setelah apiadalah penambahan arang tanah.Beberapa studi terbaru menunjukkan bahwa arang memilikipotensi untuk sangat meningkatkan kesuburan tanah. Hutan AmazonTanah diamandemen abad yang lalu dengan arang dan pupuk masihmempertahankan sebagian dari keanekaragaman hayati tertinggi dan produktivitas
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
Abstrak Kami melakukan laboratorium dan rumah kaca percobaan
untuk menentukan apakah arang yang berasal dari
ponderosa pinus / Douglas-fir ekosistem dapat mempengaruhi tanah
solusi kimia dan pertumbuhan Koeleria macrantha, sebuah
rumput abadi yang tumbuh subur setelah kebakaran. Dalam percobaan pertama kami,
kami diinkubasi tanah hutan dengan kombinasi faktorial
dari arang kayu Douglas-fir yang dihasilkan pada 350 ° C dan
ekstrak Arctostaphylos uva-ursi dengan dan tanpa
penambahan glisin sebagai sumber N labil. Hasil ini
menunjukkan bahwa arang meningkat N mineralisasi dan
nitrifikasi ketika glisin ditambahkan, tetapi mengurangi N
mineralisasi dan nitrifikasi tanpa penambahan
glisin. Arang secara signifikan mengurangi konsentrasi larutan
fenol larut dari sari sampah, tetapi mungkin
telah berkontribusi bioavailable C untuk tanah yang mengakibatkan
N imobilisasi dalam sidang no-glisin. Dalam kedua kami
percobaan kami tumbuh K. macrantha dalam tanah diubah dengan
arang yang dibuat pada 350 ° C dari ponderosa pinus dan Douglasfir
kulit. Pertumbuhan K. macrantha secara signifikan
berkurang oleh kedua jenis arang tersebut relatif terhadap
kontrol. Dalam percobaan ketiga kami, kami tumbuh K. macrantha di
tanah diubah dengan enam konsentrasi (0, 0,5, 1, 2, 5, dan
10%) dari arang yang dikumpulkan dari kebakaran hutan. Data
menunjukkan peningkatan pertumbuhan K. macrantha dengan arang
Selain itu, menunjukkan beberapa perbedaan mendasar antara
arang laboratorium yang dihasilkan dan arang kebakaran diproduksi.
Selain itu, mereka menyarankan kebutuhan untuk lebih baik
pemahaman tentang bagaimana suhu dan substrat pengaruh
sifat-sifat kimia arang.
Kata kunci Arang. . Larutan tanah kimia
Douglas-fir, dan ponderosa ekosistem pinus
Pendahuluan
Hal ini mapan api yang mengubah N bersepeda di
ponderosa pinus / Douglas-fir (Pinus ponderosa / Psuedotsuga
ekosistem menziesii) (Neary et al 1999;. Hart et al 2005. .)
ketersediaan Nitrogen telah terbukti meningkatkan segera
setelah kebakaran (Covington dan Sackett 1990, 1992; DeLuca
serta Zouhar 2000) dan mungkin tetap tinggi pada skala
bulan ke-tahun akibat mineralisasi ditingkatkan
(Covington dan Sackett 1990, 1992; . Monleon et al 1997;
Kaye dan Hart 1998; Gundale et al 2005).. Banyak
proses yang meningkatkan N mineralisasi setelah kebakaran telah
diidentifikasi, termasuk peningkatan kualitas substrat (Putih
1991, 1994; Fernandez et al 1997;.. Pietikainen et al
2000a), kematian akar dan organisme tanah menghasilkan
labil N organik kolam besar ( . DeBano et al 1979; Dunn et al.
1979; Diaz-Ravina et al 1996;.. Neary et al, 1999), dan
pengurangan C ke N rasio karena kehilangan preferensial C
. selama pembakaran (Gundale et al 2005) . Sebuah berpotensi
faktor diabaikan yang juga dapat meningkatkan N bersepeda setelah kebakaran
adalah penambahan arang untuk tanah.
Beberapa studi terbaru menunjukkan bahwa arang memiliki
potensi untuk lebih meningkatkan kesuburan tanah. Hutan Amazon
tanah diubah abad yang lalu dengan arang dan pupuk kandang masih
mempertahankan beberapa keanekaragaman hayati dan produktivitas tertinggi
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2024 I Love Translation. All reserved.

E-mail: