How Does the Immune System Respond to a Changing Pathogen?[Data from L translation - How Does the Immune System Respond to a Changing Pathogen?[Data from L Indonesian how to say

How Does the Immune System Respond

How Does the Immune System Respond to a Changing Pathogen?
[Data from L. J. Morrison, et al., Probabilistic order in antigenic variation of Trypanosoma brucei,
International Journal for Parasitology 35:961-972 (2005) and L. J. Morrison, et al., Antigenic variation in
the African trypanosome: molecular mechanisms and phenotypic complexity, Cellular Microbiology 1:
1724-1734 (2009)].
Natural selection favors parasites that are able to maintain a low-level infection in a
host for a long time. Trypanosoma, the unicellular parasite that causes sleeping sickness, is one
example. The glycoproteins covering a trypanosome’s surface are encoded by a gene that is
duplicated more than a thousand times in the organism’s genome. Each copy is slightly
different. By periodically switching among these genes, the trypanosome can display a series of
surface glycoproteins with different molecular structures. In this exercise, you will interpret two
data sets to explore possible explanation about the benefits of the trypanosome’s evershifting
surface glycoproteins and the host’s immune response.
Part A: Data from a Study of Parasite Levels.
This study measured the abundance of parasites in the blood of one human patient
during the first few weeks of a chronic infection.
Part A: Interpret the Data
1. Plot the data in the above table as a line graph. Which column is the independent variable,
and which is the dependent variable? Put the independent variable on the x-axis.
2. Visually displaying data in a graph can help make patterns in the data more noticeable.
Describe any patterns revealed by your graph.
3. Assume that a drop in parasite abundance reflects an effective immune response by the host.
Explain the pattern you described in question 2.
Part B: Data from a Study of Antibody Levels
Many decades after scientists first observed the pattern of Trypanosoma abundance
over the course of infection, researchers identified antibodies specific to different forms of the
parasite’s surface glycoprotein. The table below lists the relative abundance of two such
antibodies during the early period of chronic infection, using an index ranging from 0 (absent)
to 1.
Part B: Interpret the Data
4. Note that these data were collected over the same period of infection (days 4–24) as the
parasite abundance data you graphed in part A. Therefore, you can incorporate these new
data into your first graph, using the same x-axis. However, since the antibody level data are
measured in a different way than the parasite abundance data, add a second set of y-axis
labels on the right side of your graph. Then, using different colors or sets of symbols, add the
data for the two antibody types. Labeling the y-axis two different ways enables you to
compare how two dependent variables change relative to a shared independent variable.
5. Describe any patterns you observe by comparing the two data sets over the same period. Do
these patterns support your explanation from part A? Do they prove that explanation?
6. Scientists can now also distinguish the abundance of trypanosomes recognized specifically by
antibodies type A and type B. How would incorporating such information change your
graph?
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
How Does the Immune System Respond to a Changing Pathogen?[Data from L. J. Morrison, et al., Probabilistic order in antigenic variation of Trypanosoma brucei,International Journal for Parasitology 35:961-972 (2005) and L. J. Morrison, et al., Antigenic variation inthe African trypanosome: molecular mechanisms and phenotypic complexity, Cellular Microbiology 1:1724-1734 (2009)].Natural selection favors parasites that are able to maintain a low-level infection in ahost for a long time. Trypanosoma, the unicellular parasite that causes sleeping sickness, is oneexample. The glycoproteins covering a trypanosome’s surface are encoded by a gene that isduplicated more than a thousand times in the organism’s genome. Each copy is slightlydifferent. By periodically switching among these genes, the trypanosome can display a series ofsurface glycoproteins with different molecular structures. In this exercise, you will interpret twodata sets to explore possible explanation about the benefits of the trypanosome’s evershiftingsurface glycoproteins and the host’s immune response.Part A: Data from a Study of Parasite Levels.This study measured the abundance of parasites in the blood of one human patientduring the first few weeks of a chronic infection.Part A: Interpret the Data1. Plot the data in the above table as a line graph. Which column is the independent variable,and which is the dependent variable? Put the independent variable on the x-axis.2. Visually displaying data in a graph can help make patterns in the data more noticeable.
Describe any patterns revealed by your graph.
3. Assume that a drop in parasite abundance reflects an effective immune response by the host.
Explain the pattern you described in question 2.
Part B: Data from a Study of Antibody Levels
Many decades after scientists first observed the pattern of Trypanosoma abundance
over the course of infection, researchers identified antibodies specific to different forms of the
parasite’s surface glycoprotein. The table below lists the relative abundance of two such
antibodies during the early period of chronic infection, using an index ranging from 0 (absent)
to 1.
Part B: Interpret the Data
4. Note that these data were collected over the same period of infection (days 4–24) as the
parasite abundance data you graphed in part A. Therefore, you can incorporate these new
data into your first graph, using the same x-axis. However, since the antibody level data are
measured in a different way than the parasite abundance data, add a second set of y-axis
labels on the right side of your graph. Then, using different colors or sets of symbols, add the
data for the two antibody types. Labeling the y-axis two different ways enables you to
compare how two dependent variables change relative to a shared independent variable.
5. Describe any patterns you observe by comparing the two data sets over the same period. Do
these patterns support your explanation from part A? Do they prove that explanation?
6. Scientists can now also distinguish the abundance of trypanosomes recognized specifically by
antibodies type A and type B. How would incorporating such information change your
graph?
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
Bagaimana sistem kekebalan tubuh Menanggapi Mengubah patogen?
[Data dari LJ Morrison, et al, agar Probabilistic variasi antigenik dari Trypanosoma brucei,.
Jurnal Internasional untuk Parasitologi 35:. 961-972 (2005) dan LJ Morrison, et al, variasi antigenik di
dalam trypanosome Afrika: mekanisme molekuler dan kompleksitas fenotipik, Seluler Mikrobiologi 1:
. 1724-1734 (2009)]
seleksi alam nikmat parasit yang mampu mempertahankan infeksi tingkat rendah dalam
host untuk waktu yang lama. Trypanosoma, parasit uniseluler yang menyebabkan penyakit tidur, adalah salah satu
contoh. Glikoprotein meliputi permukaan trypanosome ini dikodekan oleh gen yang
diduplikasi lebih dari seribu kali dalam genom organisme. Setiap salinan sedikit
berbeda. Dengan berkala beralih di antara gen-gen ini, trypanosome dapat menampilkan serangkaian
glikoprotein permukaan dengan struktur molekul yang berbeda. Dalam latihan ini, Anda akan menafsirkan dua
set data untuk mengeksplorasi kemungkinan penjelasan tentang manfaat evershifting yang trypanosome ini
glikoprotein permukaan dan respon imun host.
Bagian A:. Data dari Studi Tingkat Parasite
Studi ini mengukur kelimpahan parasit dalam darah dari satu pasien manusia
selama beberapa minggu pertama infeksi kronis.
Bagian A: Menafsirkan data
1. Plot data pada tabel di atas sebagai grafik garis. Kolom yang merupakan variabel bebas,
dan yang merupakan variabel dependen? Menempatkan variabel independen pada sumbu x.
2. Visual menampilkan data dalam grafik dapat membantu membuat pola dalam data lebih terlihat.
Jelaskan pola diungkapkan oleh grafik.
3. Asumsikan bahwa penurunan parasit kelimpahan mencerminkan respon imun yang efektif oleh tuan rumah.
Jelaskan pola yang Anda gambarkan dalam pertanyaan 2.
Bagian B: Data dari Studi Tingkat Antibodi
Banyak dekade setelah para ilmuwan pertama kali diamati pola Trypanosoma kelimpahan
selama infeksi, peneliti mengidentifikasi antibodi spesifik untuk bentuk yang berbeda dari
glikoprotein permukaan parasit. Tabel di bawah ini berisi kelimpahan relatif dari dua seperti
antibodi selama periode awal infeksi kronis, menggunakan indeks mulai dari 0 (tidak ada)
ke 1.
Bagian B: Menafsirkan Data
4. Perhatikan bahwa data ini dikumpulkan selama periode yang sama infeksi (hari 4-24) sebagai
parasit kelimpahan data yang digambarkan di bagian A. Oleh karena itu, Anda dapat menggabungkan ini baru
data ke dalam grafik pertama Anda, menggunakan yang sama x-sumbu. Namun, karena data tingkat antibodi yang
diukur dengan cara yang berbeda dari data parasit kelimpahan, menambahkan set kedua y-axis
label di sisi kanan grafik Anda. Kemudian, dengan menggunakan warna yang berbeda atau set simbol, tambahkan
data untuk dua jenis antibodi. Label sumbu y dua cara yang berbeda memungkinkan Anda untuk
membandingkan bagaimana dua variabel dependen berubah relatif terhadap variabel independen bersama.
5. Jelaskan pola Anda mengamati dengan membandingkan dua set data selama periode yang sama. Apakah
pola-pola ini mendukung penjelasan Anda dari bagian A? Apakah mereka membuktikan penjelasan itu?
6. Para ilmuwan sekarang dapat juga membedakan kelimpahan trypanosomes diakui secara khusus oleh
antibodi ketik A dan tipe B. Bagaimana menggabungkan informasi tersebut akan mengubah Anda
grafik?
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2024 I Love Translation. All reserved.

E-mail: