of a Markov process with a dollar existing in one of the following sta translation - of a Markov process with a dollar existing in one of the following sta Indonesian how to say

of a Markov process with a dollar e

of a Markov process with a dollar existing in one of the following states of the system:

State Description
1 Paid category
2 Bad debt category
3 0 to 30 days age category
4 31 to 90 days age category

Based on historical transitions of accounts receivable dollars, the following transition probabilities were developed for Heidman’s Department Stores:
To State
From State 1 2 3 4
1 1.0 0.0 0.0 0.0
2 0.0 1.0 0.0 0.0
3 0.4 0.0 0.3 0.3
4 0.4 0.2 0.3 0.1
The fact that the transition probabilities from state 1 to state 1 and from state 2 to state 2 are both 1 shows that these two states are absorbing states. That is, once a dollar is paid (state 1) it is always paid. Similarly, once a dollar is declared a bad debt (state 2), it remains a bad debt. This leads us to conclude that all accounts receivable dollars will eventually be absorbed into either the paid or the bad debt state, and hence the name absorbing state.
The problem creation step for this problem is the same as that described previously. No special input procedures are required to handle the absorbing states. The output is shown in Figure 13.3. There is a .889 probability that the 0 to 30 day age category dollars will be paid and a .741 probability that the 31 to 90 day age category dollars will be paid.


Figure 13.3 Output for the Accounts Receivable Problem

0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
of a Markov process with a dollar existing in one of the following states of the system: State Description 1 Paid category 2 Bad debt category 3 0 to 30 days age category 4 31 to 90 days age categoryBased on historical transitions of accounts receivable dollars, the following transition probabilities were developed for Heidman’s Department Stores: To State From State 1 2 3 4 1 1.0 0.0 0.0 0.0 2 0.0 1.0 0.0 0.0 3 0.4 0.0 0.3 0.3 4 0.4 0.2 0.3 0.1The fact that the transition probabilities from state 1 to state 1 and from state 2 to state 2 are both 1 shows that these two states are absorbing states. That is, once a dollar is paid (state 1) it is always paid. Similarly, once a dollar is declared a bad debt (state 2), it remains a bad debt. This leads us to conclude that all accounts receivable dollars will eventually be absorbed into either the paid or the bad debt state, and hence the name absorbing state. The problem creation step for this problem is the same as that described previously. No special input procedures are required to handle the absorbing states. The output is shown in Figure 13.3. There is a .889 probability that the 0 to 30 day age category dollars will be paid and a .741 probability that the 31 to 90 day age category dollars will be paid. Figure 13.3 Output for the Accounts Receivable Problem
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
dari proses Markov dengan dolar yang ada di salah satu negara berikut sistem:

Negara Keterangan
1 Dibayar kategori
2 kategori utang Bad
kategori usia 3 0 sampai 30 hari
kategori usia 4 31-90 hari

Berdasarkan transisi historis rekening dolar piutang, probabilitas transisi berikut dikembangkan untuk Heidman Departemen Store:
untuk Nyatakan
dari negara 1 2 3 4
1 1,0 0,0 0,0 0,0
2 0,0 1,0 0,0 0,0
3 0,4 0,0 0,3 0,3
4 0,4 0,2 0,3 0,1
fakta bahwa probabilitas transisi dari keadaan 1 ke keadaan 1 dan dari negara 2 ke keadaan 2 keduanya 1 menunjukkan bahwa kedua negara ini menyerap negara. Artinya, sekali dolar dibayar (state 1) itu selalu dibayar. Demikian pula, setelah dolar dinyatakan utang buruk (state 2), itu tetap menjadi utang buruk. Hal ini membawa kita untuk menyimpulkan bahwa semua akun dolar piutang akhirnya akan diserap ke dalam baik dibayar atau negara utang buruk, dan maka nama menyerap negara.
Masalah penciptaan langkah untuk masalah ini adalah sama seperti yang dijelaskan sebelumnya. Tidak ada prosedur masukan khusus yang dibutuhkan untuk menangani negara menyerap. Output ditunjukkan pada Gambar 13.3. Ada 0,889 probabilitas bahwa 0 sampai 30 hari kategori usia dolar akan dibayar dan 0,741 probabilitas bahwa 31-90 hari kategori usia dolar akan dibayar.


Gambar 13.3 Output untuk Masalah Piutang

Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: