Results (
Indonesian) 1:
[Copy]Copied!
sembilan algoritma daerah yang berbeda, diterapkan 1-km VGT setiap haripermukaan reflektansi citra. Roy et al. (2002, 2005b) dikembangkanprediktif bi-directional reflektansi model pendekatan untuk petadibakar daerah setiap hari menggunakan citra MODIS 500-m. SebagianBaru-baru ini, Tansey et al. (2008) diubah salah satu daerah GBA-2000algoritma untuk global digunakan untuk menghasilkan L3JRC 1-km global dibakardaerah produk untuk 2000-2007.Meskipun sebagian besar metode yang ada pemetaan daerah dibakartidak mengeksploitasi informasi aktif api, minoritas hibrida algoritmayang menambah jarak jauh merasakan indikator "standar" digunakan untukmembakar pemetaan (reflektansi permukaan, suhu permukaan, NDVI, dll.)dengan aktif api maps. Roy et al. (1999), misalnya, menggunakan AVHRR datauntuk memetakan Sabana membakar di Afrika Selatan dari gabungan fosil darikisaran spektral indeks. Yang dibakar dan pasanglah pikseldibedakan menggunakan ambang berdasarkan mean dan standarpenyimpangan jangkauan indeks ini untuk piksel yang mana kebakaran aktif ituterdeteksi. Demikian pula, dalam algoritma tangan Fraser et al. (2000), yangdirancang untuk pemetaan hutan boreal luka bakar dengan AVHRR data,diharapkan perubahan dalam 10 hari berturut-turut NDVI komposit untuk dibakarpiksel berasal menggunakan masker aktif api AVHRR. Metode yang serupadikembangkan oleh Pu et al. (2004) untuk pemetaan daerah dibakar diCalifornia, lagi dengan AVHRR data. George et al. (2006) digunakan duadifferent vegetation indexes derived from 16-day MODIS nadir BRDFadjustedreflectance composites to detect burn scars in central Russiaover a twelve year period. Disturbed landscape segments wereidentified using a contextual algorithm and NDVI differencing, andthose segments containing active fires were classified as havingburned. Lastly, Loboda et al. (2007) developed a method for mappingburned areas on an annual basis using 500-m MODIS 8-day surfacereflectance composites and 1-km MODIS active fire masks. As with theRoy et al. (1999) approach, thresholds for burned pixels were derivedfrom statistics computed for pixels where active fires were detected.While the spatial and temporal information available from activefire data is intuitively useful for burned area mapping, active fire mapsgenerally have several characteristics which complicate their use inhybrid algorithms, particularly those intended for use in multiplebiomes. First, the minimum detectable size of an active fire is up to~1000 times smaller than the minimum detectable size of a burnedarea (Giglio et al., 2006); selecting burned training pixels based on theoccurrence of an active fire is therefore susceptible to contaminationfrom pixels containing small, undetectable burned areas. Second,active-fire false alarms (i.e., commission errors) will also contaminateburned training samples. Third, whereas using active fire locations toguide the selection of burned training pixels is comparativelystraightforward (e.g., Roy et al., 1999), considerably more care isrequired in selecting unburned training pixels, as the absence ofdetected fires at a particular location does not guarantee that thelocation did not burn. Active-fire omission errors can occur becausefires are too small to detect, or are obscured by clouds or overstoryvegetation, or were not actively burning at the time of the satelliteoverpass. This can lead to the inclusion of burned pixels in anunburned training sample selected on the basis of their (lack of)proximity to hot spots.In this paper we present an automated hybrid algorithm formapping burned areas using MODIS imagery which largely overcomesthe above issues. The algorithm, which is a simplified version of anearlier prototype used by Giglio et al. (2006, Appendix A), detectspersistent changes in a daily vegetation-index time series derivedfrom MODIS surface reflectance observations. Maps of active fires areused to generate regional probability density functions suitable forclassifying these persistent changes as either burned or unburned. Thealgorithm identifies the date of burn, to the nearest day, for pixelswithin individual MODIS Level 3 tiles (Section 2) at 500-m spatialresolution.Although our algorithm is conceptually similar to the hybridapproaches mentioned above, it contains several innovationsintended to more fully exploit the information provided by activefire maps, enabling the algorithm to function more robustly over awide range of biomes. Among these are the ability to identify trainingsamples of both burned and unburned pixels, in part through a regiongrowing phase, which also permits the algorithm to function in thepresence of extremely large burned areas, and the use of both spectraland textural information to help discriminate between burned andunburned pixels. In addition, the algorithm operates within a Bayesianframework in which prior probabilities are adjusted based on theproximity of burned training pixels, further exploiting the informationderived from active
Being translated, please wait..
