the comprehension posttest and the drawing posttest. Students had20 mi translation - the comprehension posttest and the drawing posttest. Students had20 mi Thai how to say

the comprehension posttest and the

the comprehension posttest and the drawing posttest. Students had
20 minutes time for completion, and did not have access to the
science text or their drawings. Finally, students were thanked and
debriefed. As students learned at their own rate, the whole procedure
took about 70–90 minutes, depending on the individual testing
times.
2.4. Results and discussion
2.4.1. Scoring
The dependent variables were students’ scores on the comprehension
and drawing posttests, students’ rating on the mental effort
and the difficulty scales, and the drawing accuracy score indicating
the quality of learner-generated drawings produced by students
in the drawing group during the learning phase.
The comprehension test score (pre- and posttest) for each student
was computed by awarding 1 point for each correct answer, and by
adding up the points to obtain the total comprehension score (out
of a total possible of 25 points). Actual scores ranged from 3 to 24
points, with a mean of 13 points (SD = 5.3). Following Schwamborn
et al. (2010), scoring of the drawing test was carried out by counting
the total number of correct main ideas in each learner’s answer
across the three drawing items. The main ideas were drawn out from
both expert visualizations and a checklist specifying important relational
features. Students could earn a maximum of 19 points on
the drawing test. Two student assistants (teacher trainees in biology)
scored the quality for each of the three drawings for each student
with an acceptable inter-rater agreement of Goodman–Kruskal
gamma of 0.90. Actual scores ranged from 0 to 18.5 points, with a
mean of 7.7 points (SD = 4.7). Total scores of both the comprehension
and the drawing testwere transferred into z-standardized scores
to make them comparable across studies.
The drawing accuracy score (concerning drawing during learning
in the drawing group) was computed by using a coding scheme
adapted fromSchwamborn et al. (2010), which was based on expert
drawings and a checklist specifying important relational features
of the drawings. Students could earn a maximum drawing-accuracy
score of 22 points. Again the two student assistants scored each of
the seven learner-generated drawings for each student with an acceptable
interrater agreement of Goodman–Kruskal gamma of .92.
Both coding schemes were constructed by the first author and a
biology teacher. Actual scores ranged from 4 to 21 points, with a
mean of 13.3 points (SD = 5.0). The total drawing accuracy score was
again transferred into a z-standardized score.
In addition the spatial ability test was scored by tallying the
number correct out of 10, and the motivation questionnaire was
scored by tallying the nine ratings on both subscales to a total score
of motivation. Finally, for comparing performance across the different
tests, the proportion correct on each test was computed by
dividing the student’s obtained score by the total possible score.
2.4.2. Are the groups equivalent on basic characteristics?
Before looking at treatment effects on the dependent variables,
we analyzedwhether the two groups differed on several control variables.
A chi-square analysis indicated that there were no significant
differences regarding gender (p = .562). Separate univariate analyses
of variance (ANOVAs) revealed that the groups did not differ
significantly on age, F < 1; on spatial ability, F < 1; or on motivation,
F(1, 46) = 3.60; p = .064. However, groups differed significantly
on prior knowledge, F(1, 46) = 38.90, p < .001, partial eta2 = .46, in
that students in the drawing group scored significantly lower on
the comprehension pretest (M = .10, SD = .15) than students in the
control group (M = .34, SD = .12). Thus, we included students’ prior
knowledge in the following analyses.
2.4.3. Is there support for the generative drawing effect?
Mean proportion correct and SDs on the comprehension and
drawing posttests for both groups are presented in Table 2. Repeated
measures univariate analyses of variance (ANOVA) with the
comprehension pre- and post-test scores as the within-subject factors
and group (drawing versus control) as the between-subject factor
showed a main effect over time indicating that overall, participants
reached significant knowledge gains between the
comprehension pretest and the comprehension posttest, F(1,
46) = 98.97; p < .001; partial eta2 = .68. An interaction additionally
showed that these knowledge gains were significantly higher for
the drawing group than for the control group, F(1, 46) = 46.17;
p < .001; partial eta2 = .50.
For the drawing test, a repeated measures ANOVA was not possible,
since these items were only used in the posttest. In this case,
a univariate analysis of covariance (ANCOVA) predicting the drawing
test score with group (drawing versus control) as the factorial independent
variable and prior knowledge as a covariate showed that
the drawing group scored significantly better than the control group
on the drawing posttest, F(1, 45) = 13.49, p = .001, partial eta2 = .23.1
Cohen’s d favoring the drawing group over the control group was
0.85 for the comprehension posttest, and 1.15 for the drawing
posttest, all of which are considered large effects. Thus, there is strong
support for the generative drawing effect, as predicted.
Additionally, results revealed that the drawing group needed significantly
more learning time (M = 21.08 min., SD = 4.24) than the
control group (M = 17.38 min., SD = 3.33), F(1, 46) = 11.34, p = .002,
partial eta2 = .20. Thus, to test whether learning time mediates the
positive effect of drawing on text comprehension, additional mediation
analyses (Baron & Kenny, 1986) were calculated by including
learning time as an additional predictor in the aforementioned linear
model. A mediation effect would be detected if, in this case, effects
of drawing on text comprehension would significantly decrease.
Results of the mediation analyses showed that the effect of drawing
on both comprehension test scores and drawing test scores was not
fullymediated by learning time. That is, including learning time still
revealed the interaction between group (drawing versus control)
and time (pre- versus post) in that the drawing group had significantly
higher knowledge gains than the control group on the
comprehension test items (p < .001). Furthermore, the drawing group
also still outperformed the control group on the drawing posttest
after controlling for learning time (p = .009).
Furthermore, results revealed that students in the drawing group
rated their invested mental effort during learning significantly higher
(M = 5.04, SD = 1.12) than students in the control group (M = 3.96,
SD = 1.65), F(1, 46) = 7.05, p = .011, partial eta2 = .13. There was no
difference between the two groups on the perceived difficulty item
(drawing group: M = 4.08, SD = 1.50; control group: M = 4.25,
SD = 1.22; F < 1). Thus, consistent with predictions concerning the
generative drawing effect, t
0/5000
From: -
To: -
Results (Thai) 1: [Copy]
Copied!
the comprehension posttest and the drawing posttest. Students had
20 minutes time for completion, and did not have access to the
science text or their drawings. Finally, students were thanked and
debriefed. As students learned at their own rate, the whole procedure
took about 70–90 minutes, depending on the individual testing
times.
2.4. Results and discussion
2.4.1. Scoring
The dependent variables were students’ scores on the comprehension
and drawing posttests, students’ rating on the mental effort
and the difficulty scales, and the drawing accuracy score indicating
the quality of learner-generated drawings produced by students
in the drawing group during the learning phase.
The comprehension test score (pre- and posttest) for each student
was computed by awarding 1 point for each correct answer, and by
adding up the points to obtain the total comprehension score (out
of a total possible of 25 points). Actual scores ranged from 3 to 24
points, with a mean of 13 points (SD = 5.3). Following Schwamborn
et al. (2010), scoring of the drawing test was carried out by counting
the total number of correct main ideas in each learner’s answer
across the three drawing items. The main ideas were drawn out from
both expert visualizations and a checklist specifying important relational
features. Students could earn a maximum of 19 points on
the drawing test. Two student assistants (teacher trainees in biology)
scored the quality for each of the three drawings for each student
with an acceptable inter-rater agreement of Goodman–Kruskal
gamma of 0.90. Actual scores ranged from 0 to 18.5 points, with a
mean of 7.7 points (SD = 4.7). Total scores of both the comprehension
and the drawing testwere transferred into z-standardized scores
to make them comparable across studies.
The drawing accuracy score (concerning drawing during learning
in the drawing group) was computed by using a coding scheme
adapted fromSchwamborn et al. (2010), which was based on expert
drawings and a checklist specifying important relational features
of the drawings. Students could earn a maximum drawing-accuracy
score of 22 points. Again the two student assistants scored each of
the seven learner-generated drawings for each student with an acceptable
interrater agreement of Goodman–Kruskal gamma of .92.
Both coding schemes were constructed by the first author and a
biology teacher. Actual scores ranged from 4 to 21 points, with a
mean of 13.3 points (SD = 5.0). The total drawing accuracy score was
again transferred into a z-standardized score.
In addition the spatial ability test was scored by tallying the
number correct out of 10, and the motivation questionnaire was
scored by tallying the nine ratings on both subscales to a total score
of motivation. Finally, for comparing performance across the different
tests, the proportion correct on each test was computed by
dividing the student’s obtained score by the total possible score.
2.4.2. Are the groups equivalent on basic characteristics?
Before looking at treatment effects on the dependent variables,
we analyzedwhether the two groups differed on several control variables.
A chi-square analysis indicated that there were no significant
differences regarding gender (p = .562). Separate univariate analyses
of variance (ANOVAs) revealed that the groups did not differ
significantly on age, F < 1; on spatial ability, F < 1; or on motivation,
F(1, 46) = 3.60; p = .064. However, groups differed significantly
on prior knowledge, F(1, 46) = 38.90, p < .001, partial eta2 = .46, in
that students in the drawing group scored significantly lower on
the comprehension pretest (M = .10, SD = .15) than students in the
control group (M = .34, SD = .12). Thus, we included students’ prior
knowledge in the following analyses.
2.4.3. Is there support for the generative drawing effect?
Mean proportion correct and SDs on the comprehension and
drawing posttests for both groups are presented in Table 2. Repeated
measures univariate analyses of variance (ANOVA) with the
comprehension pre- and post-test scores as the within-subject factors
and group (drawing versus control) as the between-subject factor
showed a main effect over time indicating that overall, participants
reached significant knowledge gains between the
comprehension pretest and the comprehension posttest, F(1,
46) = 98.97; p < .001; partial eta2 = .68. An interaction additionally
showed that these knowledge gains were significantly higher for
the drawing group than for the control group, F(1, 46) = 46.17;
p < .001; partial eta2 = .50.
For the drawing test, a repeated measures ANOVA was not possible,
since these items were only used in the posttest. In this case,
a univariate analysis of covariance (ANCOVA) predicting the drawing
test score with group (drawing versus control) as the factorial independent
variable and prior knowledge as a covariate showed that
the drawing group scored significantly better than the control group
on the drawing posttest, F(1, 45) = 13.49, p = .001, partial eta2 = .23.1
Cohen’s d favoring the drawing group over the control group was
0.85 for the comprehension posttest, and 1.15 for the drawing
posttest, all of which are considered large effects. Thus, there is strong
support for the generative drawing effect, as predicted.
Additionally, results revealed that the drawing group needed significantly
more learning time (M = 21.08 min., SD = 4.24) than the
control group (M = 17.38 min., SD = 3.33), F(1, 46) = 11.34, p = .002,
partial eta2 = .20. Thus, to test whether learning time mediates the
positive effect of drawing on text comprehension, additional mediation
analyses (Baron & Kenny, 1986) were calculated by including
learning time as an additional predictor in the aforementioned linear
model. A mediation effect would be detected if, in this case, effects
of drawing on text comprehension would significantly decrease.
Results of the mediation analyses showed that the effect of drawing
on both comprehension test scores and drawing test scores was not
fullymediated by learning time. That is, including learning time still
revealed the interaction between group (drawing versus control)
and time (pre- versus post) in that the drawing group had significantly
higher knowledge gains than the control group on the
comprehension test items (p < .001). Furthermore, the drawing group
also still outperformed the control group on the drawing posttest
after controlling for learning time (p = .009).
Furthermore, results revealed that students in the drawing group
rated their invested mental effort during learning significantly higher
(M = 5.04, SD = 1.12) than students in the control group (M = 3.96,
SD = 1.65), F(1, 46) = 7.05, p = .011, partial eta2 = .13. There was no
difference between the two groups on the perceived difficulty item
(drawing group: M = 4.08, SD = 1.50; control group: M = 4.25,
SD = 1.22; F < 1). Thus, consistent with predictions concerning the
generative drawing effect, t
Being translated, please wait..
Results (Thai) 2:[Copy]
Copied!
the comprehension posttest and the drawing posttest. Students had
20 minutes time for completion, and did not have access to the
science text or their drawings. Finally, students were thanked and
debriefed. As students learned at their own rate, the whole procedure
took about 70–90 minutes, depending on the individual testing
times.
2.4. Results and discussion
2.4.1. Scoring
The dependent variables were students’ scores on the comprehension
and drawing posttests, students’ rating on the mental effort
and the difficulty scales, and the drawing accuracy score indicating
the quality of learner-generated drawings produced by students
in the drawing group during the learning phase.
The comprehension test score (pre- and posttest) for each student
was computed by awarding 1 point for each correct answer, and by
adding up the points to obtain the total comprehension score (out
of a total possible of 25 points). Actual scores ranged from 3 to 24
points, with a mean of 13 points (SD = 5.3). Following Schwamborn
et al. (2010), scoring of the drawing test was carried out by counting
the total number of correct main ideas in each learner’s answer
across the three drawing items. The main ideas were drawn out from
both expert visualizations and a checklist specifying important relational
features. Students could earn a maximum of 19 points on
the drawing test. Two student assistants (teacher trainees in biology)
scored the quality for each of the three drawings for each student
with an acceptable inter-rater agreement of Goodman–Kruskal
gamma of 0.90. Actual scores ranged from 0 to 18.5 points, with a
mean of 7.7 points (SD = 4.7). Total scores of both the comprehension
and the drawing testwere transferred into z-standardized scores
to make them comparable across studies.
The drawing accuracy score (concerning drawing during learning
in the drawing group) was computed by using a coding scheme
adapted fromSchwamborn et al. (2010), which was based on expert
drawings and a checklist specifying important relational features
of the drawings. Students could earn a maximum drawing-accuracy
score of 22 points. Again the two student assistants scored each of
the seven learner-generated drawings for each student with an acceptable
interrater agreement of Goodman–Kruskal gamma of .92.
Both coding schemes were constructed by the first author and a
biology teacher. Actual scores ranged from 4 to 21 points, with a
mean of 13.3 points (SD = 5.0). The total drawing accuracy score was
again transferred into a z-standardized score.
In addition the spatial ability test was scored by tallying the
number correct out of 10, and the motivation questionnaire was
scored by tallying the nine ratings on both subscales to a total score
of motivation. Finally, for comparing performance across the different
tests, the proportion correct on each test was computed by
dividing the student’s obtained score by the total possible score.
2.4.2. Are the groups equivalent on basic characteristics?
Before looking at treatment effects on the dependent variables,
we analyzedwhether the two groups differed on several control variables.
A chi-square analysis indicated that there were no significant
differences regarding gender (p = .562). Separate univariate analyses
of variance (ANOVAs) revealed that the groups did not differ
significantly on age, F < 1; on spatial ability, F < 1; or on motivation,
F(1, 46) = 3.60; p = .064. However, groups differed significantly
on prior knowledge, F(1, 46) = 38.90, p < .001, partial eta2 = .46, in
that students in the drawing group scored significantly lower on
the comprehension pretest (M = .10, SD = .15) than students in the
control group (M = .34, SD = .12). Thus, we included students’ prior
knowledge in the following analyses.
2.4.3. Is there support for the generative drawing effect?
Mean proportion correct and SDs on the comprehension and
drawing posttests for both groups are presented in Table 2. Repeated
measures univariate analyses of variance (ANOVA) with the
comprehension pre- and post-test scores as the within-subject factors
and group (drawing versus control) as the between-subject factor
showed a main effect over time indicating that overall, participants
reached significant knowledge gains between the
comprehension pretest and the comprehension posttest, F(1,
46) = 98.97; p < .001; partial eta2 = .68. An interaction additionally
showed that these knowledge gains were significantly higher for
the drawing group than for the control group, F(1, 46) = 46.17;
p < .001; partial eta2 = .50.
For the drawing test, a repeated measures ANOVA was not possible,
since these items were only used in the posttest. In this case,
a univariate analysis of covariance (ANCOVA) predicting the drawing
test score with group (drawing versus control) as the factorial independent
variable and prior knowledge as a covariate showed that
the drawing group scored significantly better than the control group
on the drawing posttest, F(1, 45) = 13.49, p = .001, partial eta2 = .23.1
Cohen’s d favoring the drawing group over the control group was
0.85 for the comprehension posttest, and 1.15 for the drawing
posttest, all of which are considered large effects. Thus, there is strong
support for the generative drawing effect, as predicted.
Additionally, results revealed that the drawing group needed significantly
more learning time (M = 21.08 min., SD = 4.24) than the
control group (M = 17.38 min., SD = 3.33), F(1, 46) = 11.34, p = .002,
partial eta2 = .20. Thus, to test whether learning time mediates the
positive effect of drawing on text comprehension, additional mediation
analyses (Baron & Kenny, 1986) were calculated by including
learning time as an additional predictor in the aforementioned linear
model. A mediation effect would be detected if, in this case, effects
of drawing on text comprehension would significantly decrease.
Results of the mediation analyses showed that the effect of drawing
on both comprehension test scores and drawing test scores was not
fullymediated by learning time. That is, including learning time still
revealed the interaction between group (drawing versus control)
and time (pre- versus post) in that the drawing group had significantly
higher knowledge gains than the control group on the
comprehension test items (p < .001). Furthermore, the drawing group
also still outperformed the control group on the drawing posttest
after controlling for learning time (p = .009).
Furthermore, results revealed that students in the drawing group
rated their invested mental effort during learning significantly higher
(M = 5.04, SD = 1.12) than students in the control group (M = 3.96,
SD = 1.65), F(1, 46) = 7.05, p = .011, partial eta2 = .13. There was no
difference between the two groups on the perceived difficulty item
(drawing group: M = 4.08, SD = 1.50; control group: M = 4.25,
SD = 1.22; F < 1). Thus, consistent with predictions concerning the
generative drawing effect, t
Being translated, please wait..
Results (Thai) 3:[Copy]
Copied!
ความเข้าใจและการสอนหลังเรียน นักเรียน
เวลา 20 นาทีให้เสร็จ และไม่ได้มีการเข้าถึงข้อความหรือภาพวาด
วิทยาศาสตร์ของพวกเขา ในที่สุด นักเรียนก็ขอบคุณและ
สอบสวน เป็นนักเรียนที่เรียนในอัตราของตัวเอง
ขั้นตอนทั้งหมดใช้เวลาประมาณ 70 – 90 นาที ขึ้นอยู่กับแต่ละครั้งทดสอบ
.
2.4 . ผลและการอภิปราย
เครื่องมือกำจัดเพื่อย้าย . คะแนน
ตัวแปรตาม คือ คะแนนของนักเรียนกลุ่มทดลองและความเข้าใจ
วาดคะแนนของนักเรียนในความพยายามทางจิต
และความยาก ระดับ และการระบุคุณภาพของคะแนนความถูกต้อง

เรียนสร้างรูปวาดที่ผลิตโดยนักศึกษาในการวาดภาพกลุ่มในระหว่างขั้นตอนการเรียนรู้ ความเข้าใจ และคะแนนสอบ
( ก่อนและหลัง ) สำหรับนักศึกษา
ถูกคำนวณโดยการมอบ 1 คะแนนสำหรับคำตอบที่ถูกต้องในแต่ละครั้งและโดย
เพิ่มคะแนนให้ได้คะแนนความเข้าใจทั้งหมด ( ออก
ของที่เป็นไปได้ทั้งหมดของ 25 คะแนน ) คะแนนที่เกิดขึ้นจริงระหว่าง 3 - 24
คะแนนกับค่าเฉลี่ยของ 13 คะแนน ( SD = 5.3 ) ต่อไปนี้ schwamborn
et al . ( 2010 ) , การให้คะแนนของแบบทดสอบ โดยการนับ
จำนวนของความคิดหลักที่ถูกต้องในผู้เรียนแต่ละคำตอบ
ข้ามสามแบบรายการ ความคิดหลักได้มาจาก
ผู้เชี่ยวชาญทั้งภาพและรายการตรวจสอบการระบุคุณลักษณะเชิงสัมพันธ์
ที่สำคัญ นักศึกษาจะได้รับคะแนนสูงสุด 19
แบบทดสอบ สองผู้ช่วยนักเรียน ( ครูเข้ารับการฝึกอบรมในชีววิทยา )
คะแนนคุณภาพสำหรับแต่ละสามแบบสำหรับแต่ละนักเรียน
กับยอมรับข้อตกลงระหว่างกลุ่มโดยใช้ค่าของกู๊ดแมน (
1 . คะแนนที่แท้จริง มีค่าระหว่าง 0 ถึง 18.5 จุด กับ
หมายถึง 7.7 คะแนน ( SD = 4.7 ) คะแนนรวมของทั้งความเข้าใจและการถ่ายโอนลงใน

z-standardized ในการคิดคะแนนให้เทียบเคียงในการศึกษา .
การวาดภาพ ( วาดระหว่างเรียนกับคะแนนความถูกต้อง
ในการวาดภาพกลุ่ม ) คือคำนวณโดยใช้รูปแบบการเข้ารหัส
ดัดแปลง fromschwamborn et al . ( 2010 ) ซึ่งตามแบบผู้เชี่ยวชาญ
และรายการตรวจสอบระบุคุณสมบัติที่สําคัญเชิงสัมพันธ์
ของภาพวาด นักเรียนสามารถได้รับสูงสุด วาดความถูกต้อง
คะแนน 22 คะแนน อีกสองคะแนนแต่ละ
นักเรียนผู้ช่วย7 เรียนสร้างรูปวาดสำหรับนักเรียนแต่ละคน มีข้อตกลงที่ยอมรับได้ของกู๊ดแมนและเรียนแบบอิง
แกมมา . 92 .
ทั้งการเข้ารหัสรูปแบบถูกสร้างขึ้นโดยผู้เขียนเป็น
ครูชีววิทยา คะแนนที่เกิดขึ้นจริงระหว่าง 4 ถึง 21 แต้ม กับ
เฉลี่ย 13.3 คะแนน ( SD = 5.0 ) รวมรูปวาดความถูกต้องคะแนนเป็นคะแนน z-standardized โอนเข้าไปอีก
.
นอกจากนี้การทดสอบความสามารถด้านมิติสัมพันธ์คือคะแนนโดยนับ
หมายเลขที่ถูกต้องจาก 10 , และวัดแรงจูงใจ
คะแนนโดยนับเก้าอันดับบนโดยทั้งสองที่จะ
คะแนนรวมของแรงจูงใจ สำหรับการเปรียบเทียบประสิทธิภาพในการทดสอบที่แตกต่างกัน
, สัดส่วนที่ถูกต้องในแต่ละแบบ ถูกคำนวณโดยการหารของนักเรียน
นำคะแนน โดยคะแนนที่เป็นไปได้ทั้งหมด .
24.2 . จะเทียบเท่ากลุ่มคุณลักษณะพื้นฐาน
ก่อนที่จะมองผลกระทบของตัวแปรการรักษา , analyzedwhether
เราทั้งสองกลุ่มแตกต่างกัน ตัวแปรควบคุม หลาย การ การวิเคราะห์ไคสแควร์ พบว่าไม่มีความแตกต่างในเรื่องเพศ )
( P = . 562 ) แยกวิเคราะห์ความแปรปรวน 2
( anovas ) เปิดเผยว่า กลุ่มไม่แตกต่างกัน
อย่างมีนัยสำคัญเกี่ยวกับอายุ , F < 1 ; ความสามารถในการ F < 1 ; หรือแรงจูงใจ
f ( 1 , 0 ) = 3.60 , p = . 064 . อย่างไรก็ตาม กลุ่มแตกต่างกันอย่างมีนัยสำคัญทางสถิติในความรู้ก่อน
, f ( 1 , 0 ) = 38.90 , p < . 001 ) eta2 = . 46 ,
ที่นักเรียนวาดภาพกลุ่มคะแนนลดลงบน
ความเข้าใจก่อนเรียน ( M = 10 , SD = . 15 ) สูงกว่านักเรียนในกลุ่มควบคุม
( M = . 34 , SD = . 12 ) ดังนั้นเรารวมนักเรียนก่อน
ความรู้ในการวิเคราะห์ ดังต่อไปนี้
2.4.3 . มีการสนับสนุนสำหรับผลการเข้า ?
หมายถึงสัดส่วนที่ถูกต้องและ SDS ในความเข้าใจและ
เขียนภาษาไทยทั้งสองกลุ่มจะถูกนำเสนอในตารางที่ 2 มาตรการที่ 2 ซ้ำ
การวิเคราะห์ความแปรปรวน ( ANOVA ) กับ
เพื่อความเข้าใจในวิชาที่สอบเป็นปัจจัย
โพสต์และกลุ่ม ( เขียนแบบและควบคุม ) เป็นระหว่างเรื่องปัจจัย
แสดงผลหลักในช่วงเวลาที่ระบุว่าโดยรวม ถึงอย่างไร ระหว่างผู้เข้าร่วม

ความรู้ความเข้าใจก่อนเรียนและหลังเรียนแบบ F ( 1
46 ) = 98.97 ; p < . 05 ; บางส่วน eta2 = . 68 ปฏิสัมพันธ์นอกจากนี้
พบว่าได้รับความรู้เหล่านี้สูงขึ้น
การวาดภาพกลุ่มสูงกว่ากลุ่มควบคุม , F ( , 1 ) ) = ของเหลว ;
p < . 05 ; บางส่วน eta2 = . 50 .
สำหรับการวาดภาพแบบวัดซ้ำ ( คือไม่ได้
ตั้งแต่รายการเหล่านี้ถูกใช้ในหลังเดียว ในกรณีนี้ การรักษา การวิเคราะห์ความแปรปรวนร่วม ( ANCOVA ) ทำนายวาดภาพ
คะแนนกลุ่ม ( เขียนแบบและควบคุม )
แบบอิสระตัวแปรและความรู้เป็นชุด พบว่า กลุ่มคะแนน
วาดดีขึ้นกว่ากลุ่มควบคุม
บนวาดหลัง f ( 1 , 45 ) = 13.49 , p = . 001 ) eta2 = 23.1
Cohen D นิยมวาดภาพกลุ่มกลุ่มควบคุม
0.85 เพื่อความเข้าใจหลัง และ 1.15 สําหรับรูปวาด
หลังทั้งหมด ซึ่งถือว่าผลขนาดใหญ่ ดังนั้นมีการสนับสนุนที่แข็งแกร่ง
ผลวาดเข้า เหมือนคำทำนาย
นอกจากนี้ พบว่า ทางกลุ่มต้องการวาด
เพิ่มเติมเวลาเรียน ( M = 21.08 นาที , SD = 4.24 ) สูงกว่ากลุ่มควบคุม ( M =
17.38 นาที , SD = 3.33 ) , F ( , 1 ) ) = 11.34 , p = . 002
บางส่วน , eta2 = . 20 ดังนั้น เพื่อทดสอบว่าเวลาเรียน mediates
บวกของการวาดภาพบนความเข้าใจข้อความวิเคราะห์
ไกล่เกลี่ยเพิ่มเติม ( บารอน&เคนนี่ , 1986 ) ได้ โดยรวมถึง
เวลาเรียนเป็น Predictor เพิ่มเติมในรูปแบบเชิงเส้น
ดังกล่าวข้างต้น การไกล่เกลี่ย ผลจะถูกตรวจพบว่าในกรณีนี้ผล
รูปวาดในความเข้าใจข้อความจะลดลงอย่างมาก .
ผลลัพธ์ของการวิเคราะห์ พบว่า ผลของการวาด
ทั้งคะแนนและคะแนนแบบทดสอบวัดความเข้าใจในการวาดภาพไม่ได้
fullymediated โดยการเรียนรู้เวลา นั่นคือ รวมเวลาเรียนยัง
พบปฏิสัมพันธ์ระหว่างกลุ่ม ( เขียนแบบและควบคุม )
และเวลา ( ก่อนและหลัง ) ในการวาดภาพ กลุ่มทดลองมีความรู้สูงกว่ากำไรกว่า

เพื่อความเข้าใจ กลุ่มควบคุมทดสอบรายการ ( P < . 001 ) นอกจากนี้ กลุ่ม
รูปวาดนอกจากนี้ ยังสูงกว่ากลุ่มควบคุมที่สอนวาดรูป
หลังจากควบคุมเวลาเรียน ( P = . 009 ) .
นอกจากนี้ พบว่า นักเรียนในกลุ่ม
รูปวาดในการลงทุนความพยายามในการเรียนรู้จิตใจสูงกว่า
( M = 5.04 , SD = 1.12 ) สูงกว่านักเรียนในกลุ่มควบคุม ( M = 3.96
, SD = 1.65 ) , F ( , 1 ) ) = ลง , p = . 011 บางส่วน eta2 = 13 ไม่มี
ความแตกต่างระหว่างสองกลุ่มในการรับรู้ปัญหาสินค้า
( แบบกลุ่ม : M = 4.08 , SD = 1.50 ; กลุ่มควบคุม : M = 4.25 , SD = 1.22
; F < 1 ) ซึ่งสอดคล้องกับการคาดการณ์เกี่ยวกับผลการรังสรรค์ , T
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2024 I Love Translation. All reserved.

E-mail: