modern manufacturing supply chains should be designed with great care to minimise the amount of movement required both internally within a manufacturing facility's production system and externally between the supplier, manufacturer and customer. In so doing, a good supply chain design minimises the costs associated with the transportation of goods along with the effect this has on the environment. In complex supply chains, however, minimising overall transportation movement for large sets of components is no easy task. Consequently, the contribution contained in this paper seeks to outline a technique whereby an initial supply chain design solution which does so can be identified. The method is explained in the first instance via a straightforward material movement example. The resulting solution is subsequently modified to indicate its application in the context of temporal supply chain design. By utilising this approach, the article emphasises the importance of obtaining a solution that minimises transportation movement within the supply chain together with the practical effects of doing so on flexibility, cost and environmental pollution. In addition, the work required for further development of this technique is outlined and finally suitable conclusions are drawn.