Multicollinearity in the logistic regression solution is detected by examining the standard errors for the b coefficients. A standard error larger than 2.0 indicates numerical problems, such as multicollinearity among the independent variables, zero cells for a dummy-coded independent variable because all of the subjects have the same value for the variable, and 'complete separation' whereby the two groups in the dependent event variable can be perfectly separated by scores on one of the independent variables. Analyses that indicate numerical problems should not be interpreted.
None of the independent variables in this analysis had a standard error larger than 2.0. (The check for standard errors larger than 2.0 does not include the standard error for the Constant.)