Bernoulli’s PrincipleWe now discuss a second way in which pressure is  translation - Bernoulli’s PrincipleWe now discuss a second way in which pressure is  Indonesian how to say

Bernoulli’s PrincipleWe now discuss

Bernoulli’s Principle

We now discuss a second way in which pressure is related to velocity, namely Bernoulli’s principle, aka Bernoulli’s formula. In situations where this formula can be applied (which includes most situations – but not all), this is by far the slickest way of doing things.

Bernoulli’s principle is very easy to understand provided the principle is correctly stated. However, we must be careful, because seemingly-small changes in the wording can lead to completely wrong conclusions.

For simplicity, let’s consider a scenario where you are sitting in the airplane, in flight. We restrict attention to situations where the effects of friction can be neglected. We will analyze the same situation in two different ways.

First analysis: We pick a particular location in your reference frame, located at some fixed distance relative to you. As a premise of the scenario, we assume the air pressure, velocity, density, etc. at this location are constant. If you measure things at this location now, and come back and measure them again later, everything is the same. We call this a steady flow situation.

Second analysis: Rather than considering a particular location in space, we ask what happens to a particular parcel of air as it flows along a streamline. Even though the properties of pressure, velocity, density, etc. that pertain to a particular location are not changing, the properties that pertain to a particular parcel of air will change as the parcel flows from location to location.

We will now state the general idea of Bernoulli’s principle. In this scenario, for any particular parcel of fluid:

higher pressure ⇔ lower airspeed
lower pressure ⇔ higher airspeed
(3.2)

The explanation for this principle is completely logical and straightforward: The idea is that as the parcel moves along, following a streamline, as it moves into an area of higher pressure there will be higher pressure ahead (higher than the pressure behind) and this will exert a force on the parcel, slowing it down. Conversely if the parcel is moving into a region of lower pressure, there will be an higher pressure behind it (higher than the pressure ahead), speeding it up. As always, any unbalanced force will cause a change in momentum (and velocity), as required by Newton’s laws of motion.

There are various ways of quantifying this idea, depending on what sort of simplifications and approximations you want to make. Suppose we have two points B and A (denoting “before” and “after”) not too far apart. We continue to neglect viscosity and to assume steady flow. Then we can describe the flow of a single parcel of air as follows:

PA − PB = −½ (ρ vA2 − ρ vB2) (3.3)

where P denotes pressure, v denotes airspeed, and ρ denotes the density, i.e. mass per unit volume. In general ρA will be different from ρB but we are not going to worry about it for the moment, because the whole equation is only valid to first order, and worrying about ρA − ρB would be a second-order correction.

As a fancier way of writing this formula, we have

Δ(P) = − ½ ρ Δ(v2) (3.4)

which means exactly the same thing, since Δ(⋯) is just a fancy way of writing “small difference in ⋯” (namely the difference between point B and point A).

If we are careful, we can simplify this expression as follows:

P + ½ ρ v2 = stagnation pressure (in this scenario)
= const (to first order)
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
Bernoulli’s PrincipleWe now discuss a second way in which pressure is related to velocity, namely Bernoulli’s principle, aka Bernoulli’s formula. In situations where this formula can be applied (which includes most situations – but not all), this is by far the slickest way of doing things.Bernoulli’s principle is very easy to understand provided the principle is correctly stated. However, we must be careful, because seemingly-small changes in the wording can lead to completely wrong conclusions.For simplicity, let’s consider a scenario where you are sitting in the airplane, in flight. We restrict attention to situations where the effects of friction can be neglected. We will analyze the same situation in two different ways.First analysis: We pick a particular location in your reference frame, located at some fixed distance relative to you. As a premise of the scenario, we assume the air pressure, velocity, density, etc. at this location are constant. If you measure things at this location now, and come back and measure them again later, everything is the same. We call this a steady flow situation.Second analysis: Rather than considering a particular location in space, we ask what happens to a particular parcel of air as it flows along a streamline. Even though the properties of pressure, velocity, density, etc. that pertain to a particular location are not changing, the properties that pertain to a particular parcel of air will change as the parcel flows from location to location.We will now state the general idea of Bernoulli’s principle. In this scenario, for any particular parcel of fluid:higher pressure ⇔ lower airspeed lower pressure ⇔ higher airspeed (3.2)The explanation for this principle is completely logical and straightforward: The idea is that as the parcel moves along, following a streamline, as it moves into an area of higher pressure there will be higher pressure ahead (higher than the pressure behind) and this will exert a force on the parcel, slowing it down. Conversely if the parcel is moving into a region of lower pressure, there will be an higher pressure behind it (higher than the pressure ahead), speeding it up. As always, any unbalanced force will cause a change in momentum (and velocity), as required by Newton’s laws of motion.There are various ways of quantifying this idea, depending on what sort of simplifications and approximations you want to make. Suppose we have two points B and A (denoting “before” and “after”) not too far apart. We continue to neglect viscosity and to assume steady flow. Then we can describe the flow of a single parcel of air as follows:PA − PB = −½ (ρ vA2 − ρ vB2) (3.3)where P denotes pressure, v denotes airspeed, and ρ denotes the density, i.e. mass per unit volume. In general ρA will be different from ρB but we are not going to worry about it for the moment, because the whole equation is only valid to first order, and worrying about ρA − ρB would be a second-order correction.As a fancier way of writing this formula, we haveΔ(P) = − ½ ρ Δ(v2) (3.4)which means exactly the same thing, since Δ(⋯) is just a fancy way of writing “small difference in ⋯” (namely the difference between point B and point A).If we are careful, we can simplify this expression as follows:P + ½ ρ v2 = stagnation pressure (in this scenario) = const (to first order)
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
Prinsip Bernoulli sekarang Kami membahas cara kedua di mana tekanan terkait dengan kecepatan, yaitu prinsip Bernoulli, alias rumus Bernoulli. Dalam situasi di mana formula ini dapat diterapkan (yang mencakup sebagian besar situasi - tetapi tidak semua), ini adalah jauh cara slickest dalam melakukan sesuatu. Prinsip Bernoulli sangat mudah dimengerti tersedia prinsip ini dengan benar dinyatakan. Namun, kita harus berhati-hati, karena perubahan yang tampaknya-kecil dalam kata-kata yang dapat menyebabkan kesimpulan benar-benar salah. Untuk mempermudah, mari kita mempertimbangkan skenario di mana Anda duduk di pesawat, dalam penerbangan. Kami membatasi perhatian pada situasi di mana efek gesekan dapat diabaikan. Kami akan menganalisis situasi yang sama dalam dua cara yang berbeda. Analisis Pertama: Kami memilih lokasi tertentu dalam bingkai referensi Anda, yang terletak di beberapa jarak relatif tetap untuk Anda. Sebagai premis skenario, kita asumsikan tekanan udara, kecepatan, kepadatan, dll di lokasi ini adalah konstan. Jika Anda mengukur hal-hal di lokasi ini sekarang, dan kembali dan mengukur mereka lagi nanti, semuanya sama. Kami menyebutnya situasi aliran. Analisis Kedua: Daripada mengingat lokasi tertentu dalam ruang, kita bertanya apa yang terjadi pada sebidang tertentu udara saat mengalir bersama arus a. Meskipun sifat tekanan, kecepatan, kepadatan, dll yang berhubungan dengan lokasi tertentu tidak berubah, sifat-sifat yang berhubungan dengan sebidang tertentu udara akan berubah sebagai arus parcel dari lokasi ke lokasi. Kami sekarang akan menyatakan umum Ide prinsip Bernoulli. Dalam skenario ini, untuk setiap paket tertentu fluida: tekanan yang lebih tinggi ⇔ rendah kecepatan udara tekanan rendah ⇔ kecepatan udara yang lebih tinggi (3,2) Penjelasan untuk prinsip ini benar-benar logis dan mudah: Idenya adalah bahwa sebagai bergerak parsel bersama, berikut streamline, seperti bergerak ke daerah tekanan tinggi akan ada tekanan yang lebih tinggi ke depan (lebih tinggi dari tekanan balik) dan ini akan mengerahkan gaya pada paket, memperlambat turun. Sebaliknya jika paket tersebut bergerak ke daerah tekanan rendah, akan ada tekanan yang lebih tinggi di balik itu (lebih tinggi dari tekanan ke depan), mempercepat itu. Seperti biasa, setiap kekuatan yang tidak seimbang akan menyebabkan perubahan dalam momentum (dan kecepatan), seperti yang dipersyaratkan oleh hukum Newton tentang gerak. Ada berbagai cara untuk mengukur ide ini, tergantung pada apa jenis penyederhanaan dan perkiraan Anda ingin membuat. Misalkan kita memiliki dua titik B dan A (yang menunjukkan "sebelum" dan "setelah") tidak terlalu jauh. Kami terus mengabaikan viskositas dan menganggap aliran. Kemudian kita bisa menggambarkan aliran sebidang tunggal udara sebagai berikut: PA - PB = -½ (ρ VA2 - ρ VB2) (3.3) di mana P menunjukkan tekanan, v menunjukkan kecepatan udara, dan ρ menunjukkan kepadatan, yaitu massa per unit volume. Secara umum ρA akan berbeda dari ρB tapi kami tidak akan khawatir tentang hal itu untuk saat ini, karena seluruh persamaan ini hanya berlaku untuk urutan pertama, dan khawatir tentang ρA - ρB akan menjadi koreksi orde kedua. Sebagai cara pengujian penulisan rumus ini, kita memiliki Δ (P) = - ½ ρ Δ (v2) (3,4) yang berarti hal yang persis sama, karena Δ (⋯) adalah cara mewah menulis "perbedaan kecil dalam ⋯" (yaitu Perbedaan antara titik B dan titik A). Jika kita teliti, kita dapat menyederhanakan ungkapan ini sebagai berikut: P + ½ ρ v2 = stagnasi tekanan (dalam skenario ini) = const (untuk urutan pertama)



































Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: