Influence of different traceability systems on product recall sizeWhen translation - Influence of different traceability systems on product recall sizeWhen Indonesian how to say

Influence of different traceability

Influence of different traceability systems on product recall size
When constructing the case study it was seen that currently no
full traceability is in use in the supply chain of chocolate. This is
probably due to the fact that cocoa is farmed in non-European
countries, where there is no legislation obliging the actors
involved in a food supply chain to have traceability systems. The
European legislation states that within Europe, food companies
must be able to identify immediate suppliers and customers of
a specific product (European Commission, 2002). This legislation
guarantees full traceability within the European borders, but
traceability is lost when part of the supply chain goes outside these
borders. In the example case study constructed in this paper it was
seen that cocoa could be traced up to the local exporter, which,
since located outside Europe, is not obligated to comply with the
European law on traceability and therefore does not record any
further traceability information.
In our study the benefits of having a traceability system that is
more accurate than what the lawrequires are quantified in terms of
reduction of product recalls. In order to propose realistic
improvements of the traceability system of the case study supply
chain, TSþ and TSþþ were designed taking into consideration that
most of the cocoa farmers would not have the resources to invest in
technologies, therefore these improvements imply very low
investments. In order to analyze the influence of these different
traceability systems (TS0, TSþ and TSþþ) on the recall size of the
finished product in case of contamination of the raw materials, we
again used the simulation tool. In order to have an accurate result
the simulation model has been run 100 times for each processing
batch size and data are shown in Fig. 6 as the average of the averages
of the results of all roasting equipment sizes (kg).
The results show an average recall size of 1,608,719 units of
product for TS0, an average recall size of 714,584 units of product
for TSþ and an average recall size of 55,789 units of product for
TSþþ. No standard deviation is shown in the Fig. 6 because it would
show a variation which is mainly caused by the different roasting
equipment sizes, thus giving a false sense of variability. However,
acceptable standard deviations were seen when analyzing the
underlying simulation results for each of the equipment sizes.
These results show that in the case study supply chain, in case of
contamination of the raw materials the adoption of TSþ would
reduce the recall size of approximately 55% and the adoption
a TSþþ would reduce the recall size of approximately 96%. Again,
the probability that a recall occurs would need to be considered to
justify the investment needed to set up such traceability systems.
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
Pengaruh sistem keterlacakan yang merupakan berbeda pada ukuran recall produkKetika membangun studi kasus itu terlihat bahwa saat ini belum adapenelusuran lengkap yang digunakan dalam rantai pasokan cokelat. Ini adalahmungkin karena kenyataan bahwa kakao bertani di non-Eropanegara, mana ada tidak ada perundang-undangan yang mewajibkan para aktorterlibat dalam rantai pasokan makanan untuk memiliki sistem keterlacakan yang merupakan. TheUndang-undang Eropa menyatakan bahwa di Eropa, perusahaan makananharus mampu mengidentifikasi segera pemasok dan pelangganproduk tertentu (Komisi Eropa, 2002). Undang-undang inijaminan penuh ketertelusuran dalam batas-batas Eropa, tetapiPenelusuran hilang ketika bagian dari rantai pasokan keluar iniperbatasan. Dalam contoh studi kasus dibangun dalam makalah ini adalahterlihat bahwa kakao dapat ditelusuri hingga eksportir lokal, yang,karena terletak di luar Eropa, tidak diwajibkan untuk mematuhiHukum Eropa pada penelusuran dan karena itu tidak mencatat apapuninformasi penelusuran lebih lanjut.Dalam studi kami manfaat memiliki sistem keterlacakan yang merupakanlebih akurat dari apa yang lawrequires diukur dari segipengurangan produk kenang. Untuk mengusulkan realistisperbaikan sistem keterlacakan pasokan studi kasusrantai, TSþ dan TSþþ dirancang dengan mempertimbangkan bahwasebagian besar petani kakao tidak akan memiliki sumber daya untuk berinvestasi dalamteknologi, karena itu perbaikan ini menyiratkan sangat rendahinvestasi. Untuk menganalisis pengaruh ini berbedasistem keterlacakan yang merupakan (TS0, TSþ dan TSþþ) pada ukuran ingatproduk akhir dalam kasus pencemaran bahan baku, kamisekali lagi digunakan alat simulasi. Untuk memiliki hasil yang akuratmodel simulasi telah menjalankan 100 kali untuk memproses setiapbatch ukuran dan data ditampilkan dalam Fig. 6 sebagai rata-rata rata-ratahasil peralatan semua memanggang ukuran (kg).Hasilnya menunjukkan rata-rata ingat ukuran unit 1,608,719produk untuk TS0, ukuran rata-rata ingat 714,584 unit baranguntuk TSþ dan ukuran rata-rata ingat 55,789 unit produk untukTSþþ. Deviasi standar tidak ditampilkan dalam Fig. 6 karena itu akanmenunjukkan variasi yang terutama disebabkan oleh memanggang berbedaperalatan ukuran, sehingga memberikan rasa palsu variabilitas. Namun,diterima standar deviasi terlihat ketika menganalisishasil simulasi yang mendasari untuk setiap ukuran peralatan.Hasil ini menunjukkan bahwa dalam studi kasus rantai pasokan, apabilakontaminasi bahan baku yang akan adopsi TSþmengurangi ukuran ingat sekitar 55% dan adopsiTSþþ akan mengurangi ukuran ingat sekitar 96%. Sekali lagi,kemungkinan bahwa ingat terjadi akan perlu dipertimbangkan untukmembenarkan investasi yang diperlukan untuk mengatur sistem keterlacakan tersebut.
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: