1) DATA CLEANINGReal world data tend to be in complete, noisy and inco translation - 1) DATA CLEANINGReal world data tend to be in complete, noisy and inco Indonesian how to say

1) DATA CLEANINGReal world data ten

1) DATA CLEANING
Real world data tend to be in complete, noisy and inconsistent. data cleaning routines attempts to fill in missing values, smooth out noise while identifying outliers, and correct
inconsistencies in the data.[2]
a)Ways for handling missing values:
a. Ignore the tuple: this is usually done when class label is missing. This method is not very effective, unless tuple contains several attributes with missing values. It is especially
poor when the percentage of missing values per attributes varies considerably.
b. Fill in the missing value manually: this approach is time consuming and may not be feasible given a large data set with missing values.
c. Use a global constant to fill in the missing value: replace all missing attribute values by the same constant, such as label like “unknown”. if missing value are replaced by ,say unknown
then the mining program may mistakenly think that they form an interesting concept ,since they all have a value common – that of “unknown”. Hence, although this method is simple, it is
not foolproof.
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
1) DATA CLEANINGReal world data tend to be in complete, noisy and inconsistent. data cleaning routines attempts to fill in missing values, smooth out noise while identifying outliers, and correctinconsistencies in the data.[2]a)Ways for handling missing values:a. Ignore the tuple: this is usually done when class label is missing. This method is not very effective, unless tuple contains several attributes with missing values. It is especiallypoor when the percentage of missing values per attributes varies considerably.b. Fill in the missing value manually: this approach is time consuming and may not be feasible given a large data set with missing values.c. Use a global constant to fill in the missing value: replace all missing attribute values by the same constant, such as label like “unknown”. if missing value are replaced by ,say unknownthen the mining program may mistakenly think that they form an interesting concept ,since they all have a value common – that of “unknown”. Hence, although this method is simple, it isnot foolproof.
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
1) DATA PEMBERSIHAN
data dunia nyata cenderung secara lengkap, berisik dan tidak konsisten. pembersihan data rutinitas mencoba untuk mengisi nilai-nilai yang hilang, menghaluskan suara sementara mengidentifikasi outliers, dan benar
inkonsistensi dalam data [2].
a) Cara untuk menangani nilai-nilai yang hilang:
a. Abaikan tupel: ini biasanya dilakukan ketika label kelas hilang. Metode ini sangat tidak efektif, kecuali tuple berisi beberapa atribut dengan nilai-nilai yang hilang. Hal ini terutama
miskin ketika persentase nilai yang hilang per atribut bervariasi.
B. Isikan nilai yang hilang secara manual: pendekatan ini memakan waktu dan mungkin tidak layak diberi data yang besar dengan nilai-nilai yang hilang.
C. Gunakan konstan global untuk mengisi nilai yang hilang: mengganti semua nilai atribut hilang oleh konstan yang sama, seperti label seperti "tidak diketahui". jika nilai yang hilang diganti dengan, mengatakan tidak diketahui
maka program pertambangan mungkin keliru berpikir bahwa mereka membentuk sebuah konsep menarik, karena mereka semua memiliki nilai umum - yang dari "tidak diketahui". Oleh karena itu, meskipun metode ini sederhana, itu
tidak mudah.
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: