You are certainly familiar with systems of two linear equations in two translation - You are certainly familiar with systems of two linear equations in two Indonesian how to say

You are certainly familiar with sys

You are certainly familiar with systems of two linear equations in two unknowns:
Recall that unless the coefficients of one equation are proportional to the coefficients of the other, the system has a unique solution. The standard method for
finding this solution is to use either equation to express one of the variables as a
function of the other and then substitute the result into the other equation, yielding a linear equation whose solution is then used to find the value of the second
variable.
In many applications, we need to solve a system of n equations in n
unknowns:

wherenis a large number. Theoretically, we can solve such a system by generalizing the substitution method for solving systems of two linear equations (what
general design technique would such a method be based upon?); however, the
resulting algorithm would be extremely cumbersome.
Fortunately, there is a much more elegant algorithm for solving systems of
linear equations calledGaussian elimination.2
The idea of Gaussian elimination
is to transform a system of nlinear equations in nunknowns to an equivalent
system (i.e., a system with the same solution as the original one) with an uppertriangular coefficient matrix, a matrix with all zeros below its main diagonal:

(We added primes to the matrix elements and right-hand sides of the new system
to stress the point that their values differ from their counterparts in the original
system.)
Why is the system with the upper-triangular coefficient matrix better than
a system with an arbitrary coefficient matrix? Because we can easily solve the
system with an upper-triangular coefficient matrix by back substitutions as follows.
First, we can immediately find the value ofxnfrom the last equation; then we can
substitute this value into the next to last equation to getxn−1
,and so on, until we
substitute the known values of the lastn−1 variables into the first equation, from
which we find the value ofx1
.
So how can we get from a system with an arbitrary coefficient matrixAto an
equivalent system with an upper-triangular coefficient matrixA
? We can do that
through a series of the so-calledelementary operations:
exchanging two equations of the system
replacing an equation with its nonzero multiple
replacing an equation with a sum or difference of this equation and some
multiple of another equation
Since no elementary operation can change a solution to a system, any system that
is obtained through a series of such operations will have the same solution as the
original one.
Let us see how we can get to a system with an upper-triangular matrix. First,
we usea11as apivotto make all x1coefficients zeros in the equations below
the first one. Specifically, we replace the second equation with the difference
between it and the first equation multiplied bya21/a11to get an equation with
a zero coefficient forx1
. Doing the same for the third, fourth, and finallynth
equation—with the multiplesa31/a11,a41/a11,...,an1/a11of the first equation,
respectively—makes all the coefficients ofx1below the first equation zero. Then
we get rid of all the coefficients ofx2by subtracting an appropriate multiple of the
second equation from each of the equations below the second one. Repeating this
210 Transform-and-Conquer
elimination for each of the firstn−1 variables ultimately yields a system with an
upper-triangular coefficient matrix.
Before we look at an example of Gaussian elimination, let us note that we
can operate with just a system’s coefficient matrix augmented, as its(n+1)st
column, with the equations’ right-hand side values. In other words, we need to
write explicitly neither the variable names nor the plus and equality signs.


There are two important observations to make about this pseudocode. First, it
is not always correct: ifA[i, i]=0,we cannot divide by it and hence cannot use the
ith row as a pivot for theith iteration of the algorithm. In such a case, we should
take advantage of the first elementary operation and exchange theith row with
some row below it that has a nonzero coefficient in theith column. (If the system
has a unique solution, which is the normal case for systems under consideration,
such a row must exist.)
Since we have to be prepared for the possibility of row exchanges anyway, we
can take care of another potential difficulty: the possibility thatA[i, i] is so small
and consequently the scaling factorA[j, i]/A[i, i] so large that the new value of
A[j, k] might become distorted by a round-off error caused by a subtraction of two
numbers of greatly different magnitudes.
3
To avoid this problem, we can always
look for a row with the largest absolute value of the coefficient in theith column,
exchange it with theith row, and then use the new A[i, i] as the ith iteration’s
pivot. This modification, calledpartial pivoting, guarantees that the magnitude
of the scaling factor will never exceed 1.
The second observation is the fact that t
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
You are certainly familiar with systems of two linear equations in two unknowns:Recall that unless the coefficients of one equation are proportional to the coefficients of the other, the system has a unique solution. The standard method forfinding this solution is to use either equation to express one of the variables as afunction of the other and then substitute the result into the other equation, yielding a linear equation whose solution is then used to find the value of the secondvariable.In many applications, we need to solve a system of n equations in nunknowns:wherenis a large number. Theoretically, we can solve such a system by generalizing the substitution method for solving systems of two linear equations (whatgeneral design technique would such a method be based upon?); however, theresulting algorithm would be extremely cumbersome.Fortunately, there is a much more elegant algorithm for solving systems oflinear equations calledGaussian elimination.2The idea of Gaussian eliminationis to transform a system of nlinear equations in nunknowns to an equivalentsystem (i.e., a system with the same solution as the original one) with an uppertriangular coefficient matrix, a matrix with all zeros below its main diagonal:(We added primes to the matrix elements and right-hand sides of the new systemto stress the point that their values differ from their counterparts in the originalsystem.)Why is the system with the upper-triangular coefficient matrix better thana system with an arbitrary coefficient matrix? Because we can easily solve thesystem with an upper-triangular coefficient matrix by back substitutions as follows.First, we can immediately find the value ofxnfrom the last equation; then we cansubstitute this value into the next to last equation to getxn−1,and so on, until wesubstitute the known values of the lastn−1 variables into the first equation, fromwhich we find the value ofx1.So how can we get from a system with an arbitrary coefficient matrixAto anequivalent system with an upper-triangular coefficient matrixA? We can do thatthrough a series of the so-calledelementary operations:exchanging two equations of the systemreplacing an equation with its nonzero multiplereplacing an equation with a sum or difference of this equation and somemultiple of another equationSince no elementary operation can change a solution to a system, any system thatis obtained through a series of such operations will have the same solution as theoriginal one.Let us see how we can get to a system with an upper-triangular matrix. First,we usea11as apivotto make all x1coefficients zeros in the equations belowthe first one. Specifically, we replace the second equation with the differencebetween it and the first equation multiplied bya21/a11to get an equation witha zero coefficient forx1. Doing the same for the third, fourth, and finallynth
equation—with the multiplesa31/a11,a41/a11,...,an1/a11of the first equation,
respectively—makes all the coefficients ofx1below the first equation zero. Then
we get rid of all the coefficients ofx2by subtracting an appropriate multiple of the
second equation from each of the equations below the second one. Repeating this
210 Transform-and-Conquer
elimination for each of the firstn−1 variables ultimately yields a system with an
upper-triangular coefficient matrix.
Before we look at an example of Gaussian elimination, let us note that we
can operate with just a system’s coefficient matrix augmented, as its(n+1)st
column, with the equations’ right-hand side values. In other words, we need to
write explicitly neither the variable names nor the plus and equality signs.


There are two important observations to make about this pseudocode. First, it
is not always correct: ifA[i, i]=0,we cannot divide by it and hence cannot use the
ith row as a pivot for theith iteration of the algorithm. In such a case, we should
take advantage of the first elementary operation and exchange theith row with
some row below it that has a nonzero coefficient in theith column. (If the system
has a unique solution, which is the normal case for systems under consideration,
such a row must exist.)
Since we have to be prepared for the possibility of row exchanges anyway, we
can take care of another potential difficulty: the possibility thatA[i, i] is so small
and consequently the scaling factorA[j, i]/A[i, i] so large that the new value of
A[j, k] might become distorted by a round-off error caused by a subtraction of two
numbers of greatly different magnitudes.
3
To avoid this problem, we can always
look for a row with the largest absolute value of the coefficient in theith column,
exchange it with theith row, and then use the new A[i, i] as the ith iteration’s
pivot. This modification, calledpartial pivoting, guarantees that the magnitude
of the scaling factor will never exceed 1.
The second observation is the fact that t
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
Anda tentu akrab dengan sistem dua persamaan linear dalam dua diketahui:
Ingat bahwa jika koefisien dari satu persamaan yang sebanding dengan koefisien yang lain, sistem memiliki solusi unik. Metode standar untuk
menemukan solusi ini adalah dengan menggunakan persamaan baik untuk mengekspresikan salah satu variabel sebagai
fungsi yang lain dan kemudian mengganti hasilnya ke dalam persamaan lainnya, menghasilkan persamaan linear yang solusinya kemudian digunakan untuk mencari nilai dari kedua
. variabel
Dalam banyak aplikasi, kita perlu untuk memecahkan sistem persamaan n di n
tidak diketahui: wherenis sejumlah besar. Secara teoritis, kita bisa memecahkan sistem tersebut dengan generalisasi metode substitusi untuk sistem dua persamaan linear pemecahan (apa teknik desain umum akan seperti metode didasarkan pada?); Namun, algoritma yang dihasilkan akan sangat rumit. Untungnya, ada algoritma yang lebih elegan untuk memecahkan sistem persamaan linear calledGaussian elimination.2 Ide eliminasi Gauss adalah untuk mengubah sistem persamaan nlinear di nunknowns untuk setara sistem (yaitu , sistem dengan solusi yang sama dengan yang asli) dengan matriks koefisien uppertriangular, matriks dengan semua nol bawah diagonal utamanya: (Kami menambahkan bilangan prima untuk elemen matriks dan sisi kanan dari sistem baru untuk menekankan titik bahwa nilai-nilai mereka berbeda dari rekan-rekan mereka di asli sistem.) Mengapa sistem dengan koefisien matriks atas-segitiga yang lebih baik daripada sistem dengan koefisien matriks sewenang-wenang? Karena kita dapat dengan mudah memecahkan. Sistem dengan koefisien matriks atas-segitiga dengan kembali substitusi sebagai berikut Pertama, kita bisa langsung menemukan nilai ofxnfrom persamaan terakhir; maka kita dapat mengganti nilai ini ke dalam sebelah persamaan terakhir untuk getxn-1, dan seterusnya, sampai kita mengganti nilai-nilai yang diketahui dari lastn-1 variabel ke persamaan pertama, dari mana kita menemukan nilai ofx1. Jadi bagaimana kita bisa dapatkan dari sistem dengan koefisien sewenang-wenang matrixAto sebuah sistem yang setara dengan koefisien matrixA atas-segitiga? Kita dapat melakukan itu melalui serangkaian operasi sehingga-calledelementary: pertukaran dua persamaan dari sistem menggantikan persamaan dengan beberapa nol yang menggantikan persamaan dengan jumlah atau perbedaan persamaan ini dan beberapa beberapa persamaan lain Karena tidak ada operasi dasar dapat mengubah solusi untuk sistem, setiap sistem yang diperoleh melalui serangkaian operasi tersebut akan memiliki solusi yang sama seperti aslinya. Mari kita lihat bagaimana kita bisa mendapatkan sistem dengan matriks atas-segitiga. Pertama, kita usea11as apivotto membuat semua x1coefficients nol dalam persamaan di bawah ini yang pertama. Secara khusus, kita ganti persamaan kedua dengan perbedaan antara itu dan persamaan pertama dikalikan bya21 / a11to mendapatkan persamaan dengan sebuah forx1 koefisien nol. Melakukan hal yang sama untuk ketiga, keempat, dan finallynth persamaan-dengan multiplesa31 / a11, A41 / a11, ..., AN1 / a11of persamaan pertama, masing-membuat semua koefisien ofx1below persamaan pertama nol. Kemudian kita menyingkirkan semua koefisien ofx2by mengurangkan kelipatan tepat dari persamaan kedua dari masing-masing persamaan di bawah satu detik. Mengulangi ini 210 Transform-dan-Conquer eliminasi untuk masing-masing variabel-firstn 1 akhirnya menghasilkan sistem dengan koefisien matriks atas-segitiga. Sebelum kita melihat contoh eliminasi Gauss, mari kita perhatikan bahwa kita dapat beroperasi hanya dengan sistem matriks koefisien ditambah, sebagai yang (n + 1) st kolom, dengan nilai-nilai sisi kanan persamaan '. Dengan kata lain, kita perlu menulis secara eksplisit tidak nama-nama variabel maupun plus dan kesetaraan tanda-tanda. Ada dua pengamatan penting untuk membuat tentang pseudocode ini. Pertama, tidak selalu benar: Ifa [i, i] = 0, kita tidak bisa membagi dengan itu dan karenanya tidak dapat menggunakan baris ke- sebagai pivot untuk theith iterasi dari algoritma. Dalam kasus seperti itu, kita harus mengambil keuntungan dari operasi dasar pertama dan bertukar baris theith dengan beberapa baris di bawahnya yang memiliki koefisien nol di kolom theith. (Jika sistem memiliki solusi yang unik, yang merupakan kasus normal untuk sistem yang dipertimbangkan, berturut-turut seperti harus ada.) Karena kita harus siap untuk kemungkinan pertukaran baris pula, kita bisa mengurus potensi kesulitan lain: Kemungkinan Thata [i, i] begitu kecil dan akibatnya skala factorA [j, i] / A [i, i] begitu besar sehingga nilai baru dari A [j, k] mungkin menjadi terdistorsi oleh kesalahan round-off disebabkan oleh pengurangan dua angka besaran sangat berbeda. 3 Untuk menghindari masalah ini, kita dapat selalu mencari baris dengan nilai absolut terbesar dari koefisien dalam kolom theith, pertukaran dengan baris theith, dan kemudian menggunakan baru A [i , i] sebagai i iterasi ini pivot. Modifikasi ini, berputar calledpartial, menjamin bahwa besarnya dari faktor skala tidak akan pernah melebihi 1. Pengamatan kedua adalah fakta bahwa t







































































Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: