Albert Einstein is famous for many things, not least his theories of r translation - Albert Einstein is famous for many things, not least his theories of r Tamil how to say

Albert Einstein is famous for many

Albert Einstein is famous for many things, not least his theories of relativity. The first, the special theory of relativity, was the one that began the physicist's reputation for tearing apart the classical worldview that had come before. Special relativity, a way of relating the motion of objects in the universe, led scientists to re-evaluate their assumptions about things as fundamental as time and space. And it led to important revelations about the relationship between energy and matter.
Special relativity was published by Einstein in 1905, in a paper titled "On the Electrodynamics of Moving Bodies". He came to it after picking on a conflict he noticed between the equations for electricity and magnetism, which the physicist James Clerk Maxwell had recently developed, and Isaac Newton's more established laws of motion.
Light, according to Maxwell, was a vibration in the electromagnetic field and it travelled at a constant speed in a vacuum. More than 100 years earlier, Newton had set down his laws of motion and, together with ideas from Galileo Galilei, these showed how the speed of an object would differ depend on who was measuring it and how they were moving relative to the object. A ball you are holding will seem still to you, even when you're in a moving car. But that ball will seem to be moving to anyone standing on the pavement.
But there was a problem in applying Newton's laws of motion to light. In Maxwell's equations, the speed of electromagnetic waves is a constant defined by the properties of the material through which the waves move. There is nothing in there that allows the speed of these waves to be different for different people depending on how they were moving relative to each other. Which is bizarre, if you think about it.
Imagine someone sitting in a stationary train, throwing a ball from where he's sitting to the opposite wall, a few metres further down the train from him. You, standing on the station platform, measure the speed of the ball at the same value as the person on the train.
Now the train starts to move (in the direction of the ball), and you again measure the speed of the ball. You would rightly calculate it as higher – the initial speed (ie, when the train was at rest) plus the forward speed of the train. On the train, meanwhile, the game-player will notice nothing different. Your two values for the speed of the ball will be different; both correct for your frames of reference.
Replace the ball with light and this calculation goes awry. If the person on the train were shining a light at the opposite wall and measured the speed of the particles of light (photons), you and the passenger would both find that the photons had the same speed at all times. In all cases, the speed of the photons would stay at just under 300,000 kilometres per second, as Maxwell's equations say they should.

Einstein took this idea – the invariance of the speed of light – as one of his two postulates for the special theory of relativity. The other postulate was that the laws of physics are the same wherever you are, whether on an plane or standing on a country road. But to keep the speed of light constant at all times and for all observers, in special relativity, space and time become stretchy and variable. Time is not absolute, for example. A moving clock ticks more slowly than a stationary one. Travel at the speed of light and, theoretically, the clock would stop altogether.
How much the time dilates can be calculated by the two equations above. On the right, Δt is the time interval between two events as measured by the person they affect. (In our example above, this would be the person in the train.) On the left, Δt' is the time interval between the same two events but measured by an outside observer in a separate frame of reference (the person on the platform). These two times are related by the Lorentz factor (γ), which in this example is a term that takes into account the velocity (v) of the train relative to the station platform, which is "at rest". In this expression, c is a constant equal to the speed of light in a vacuum.
The length of moving objects also shrink in the direction in which they move. Get to the speed of light (not really possible, but imagine if you could for a moment) and the object's length would shrink to zero.
The contracted length of a moving object relative to a stationary one can be calculated by dividing the proper length by the Lorentz factor – if it were possible for an object to reach the speed of light its length would shrink to zero.
It is important to note that if you were the person moving faster and faster, you would not notice anything: time would tick normally for you and you would not be squashed in length. But anyone watching you from the celestial station platform would be able to measure the differences, as calculated from the Lorentz factor. However, for everyday objects and everyday speeds, the Lorentz factor will be close to 1 – it is only at speeds close to that of light that the relativistic effects need serious attention.
Another feature that emerges from special relativity is that, as something speeds up, its mass increases compared with its mass at rest, with the mass of the moving object determined by multiplying its rest mass by the Lorentz factor. This increase in relativistic mass makes every extra unit of energy you put into speeding up the object less effective at making it actually move faster.
As the speed of the object increases and starts to reach appreciable fractions of the speed of light (c), the portion of energy going into making the object more massive gets bigger and bigger.
0/5000
From: -
To: -
Results (Tamil) 1: [Copy]
Copied!
ஆல்பர்ட் ஐன்ஸ்டீன் பல விஷயங்கள், சார்பியல் குறைந்தது அவரது கோட்பாடுகள் பிரபலமானது. சார்பியல் முதல் சிறப்புக் கோட்பாட்டை, முன் இருந்த பாரம்பரிய உலக கண்ணோட்டத்தை கிளியுண்டு க்கான இயற்பியலாளர் தான் புகழ் தொடங்கியது என்று ஒரு இருந்தது. சிறப்பு சார்பியல் கொள்கை, பிரபஞ்சத்தில் உள்ள பொருட்களின் இயக்கத்தை தொடர்பான ஒரு வழி, நேரம் மற்றும் இடம் போன்ற அடிப்படை விஷயங்களை பற்றி மறுமதிப்பீடு தங்கள் ஊகங்களை விஞ்ஞானிகள் வழிவகுத்தது. அது ஆற்றல் மற்றும் ஒரு விஷயமே இடையே உள்ள உறவு பற்றி முக்கியமான வசனங்களை வழிவகுத்தது.
சிறப்பு சார்பியல் கொள்கை "உடல்கள் நகரும்" ஆன் த எலெக்ட்ரோடைனமிக்ஸ் என்ற தலைப்பில் ஒரு கட்டுரையை உள்ள, 1905-ல் ஐன்ஸ்டீன் வெளியிடப்பட்டது. அவர் ஜேம்ஸ் கிளார்க் மேக்ஸ்வெல் சமீபத்தில் வளர்ந்திருந்த இயற்பியலாளர் மின்சாரம் மற்றும் காந்தவிசையையும் சமன்பாடுகளை இடையே கவனித்தனர் போர் எடுக்கவில்லை பிறகு அது வந்து, இயக்கம். ஐசக் நியூட்டனின் இயக்கவியல் மேலும் நிறுவப்பட்டது சட்டங்கள்
லைட், மேக்ஸ்வெல் படி, மின்காந்த ஒரு அதிர்வு இருந்தது துறையில் அது ஒரு வெற்றிடத்தில் ஒரு நிலையான வேகத்தில் பயணம். 100 க்கும் மேற்பட்ட ஆண்டுகளுக்கு முன்பு, நியூட்டன் கலிலியோ கலிலி இருந்து கருத்துக்கள் சேர்ந்து, இயக்கம் தனது சட்டங்களை அமைக்க இருந்தது, இந்த ஒரு பொருளின் வேகம் அது அளவிடும் பொறுத்ததல்ல வேறுபடுகின்றன என்பதை காட்டியது அவர்கள் பொருள் உறவினர் நகர்கின்றார்கள் என்பதை. நீங்கள் ஒரு நகரும் கார் இருக்கும் போது நீங்கள் வைத்திருக்கும் ஒரு பந்து, நீங்கள் இன்னும் தெரியும். ஆனால் அந்த பந்து நடைபாதையில் நின்று யாருக்கும் நகரும் இருக்க தெரியும்.
ஆனால் ஒளி நியூட்டனின் இயக்க விதிகள் விண்ணப்பிக்கும் ஒரு பிரச்சனை இருந்தது. மேக்ஸ்வெல் சமன்பாடுகள் இல், மின்காந்த அலைகளின் வேகம் அலைகள் நகர்த்த எந்த வழியாகவும் பொருள் பண்புகள் மூலம் வரையறுக்கப்பட்ட ஒரு மாறிலி. இந்த அலைகள் வேகம் அவர்கள் ஒருவருக்கொருவர் உறவினர் நகர்கின்றார்கள் என்பதை பொறுத்து வெவ்வேறு மக்கள் வெவ்வேறு இருக்க அனுமதிக்கிறது என்று அங்கு எதுவும் இல்லை. நீங்கள் அதை பற்றி நினைத்தால் எந்த, விநோத உள்ளது.
யாரோ, அவர், ஒரு சில மீட்டர் மேலும் ரயில் அவரை கீழே இருந்து எதிர் சுவரில் உட்கார்ந்திருக்கிறாள் அங்கு இருந்து ஒரு பந்தை வீசி, ஒரு நிலையான ரயில் உட்கார்ந்து கற்பனை. நீங்கள் நிலையம் மேடையில் நின்று,. ரயில் நபர் அதே மதிப்பு பந்தை வேகத்தை அளவிட
இப்போது ரயில் (பந்தை திசையில்) செல்ல தொடங்கும், மற்றும் நீங்கள் மீண்டும் பந்து வேகம் அளவிட. நீங்கள் சரியாக அதிக அதை கணக்கிட வேண்டும் - ரயில் (ஓய்வு போது அதாவது) ஆரம்ப வேகம் பிளஸ் ரயில் முன்னோக்கி வேகம். ரயிலில், இதற்கிடையில், விளையாட்டு வீரர் வேறு எதுவும் கவனிக்கும். வித்தியாசமாக இருக்கும் பந்து வேகம் உங்கள் இரண்டு மதிப்புகள்; இருவரும் குறிப்பு உங்கள் பிரேம்கள் சரியான.
ஒளி பந்து மாற்றவும் மற்றும் இந்த கணக்கீடு திசை திரும்பினாலும். ரயில் நபர் எதிர் சுவரில் ஒரு ஒளி பிரகாசிக்கும் மற்றும் ஒளி துகள்கள் (ஃபோட்டான்கள்) வேகம் அளவிடப்படுகிறது என்றால், நீங்கள் மற்றும் பயணிகள் இரண்டு ஃபோட்டான்கள் முழுவதும் ஒரே வேகம் இருந்தது என்று கண்டுபிடிக்க வேண்டும். மேக்ஸ்வெல் சமன்பாடுகள் அவர்கள் வேண்டும் சொல்வது போல் அனைத்து வழக்குகளில், ஃபோட்டான்கள் வேகம், விநாடிக்கு வெறும் கீழ் 300,000 கிமீ இருக்க வேண்டும். ஐன்ஸ்டீன் இந்த யோசனை எடுத்து - சிறப்பு சார்பியல் கோட்பாட்டின் தனது இரண்டு அனுமானங்களை ஒன்றாக - ஒளி வேகம் மாற்றமின்மையைக் சார்பியல். மற்ற முன்வைத்தனர் இயற்பியல் விதிகள், நீங்கள் எங்கிருந்தாலும் அதே என்று இருந்தது ஒரு விமானம் அல்லது ஒரு நாட்டின் சாலையில் நின்று என்பதை. ஆனால் சிறப்பு சார்பியல், விண்வெளி மற்றும் நேரம் நீட்டத்தக்க மற்றும் மாறி மாறிவிட்டது, எல்லா நேரங்களிலும் மற்றும் அனைத்து பார்வையாளர்கள் ஒளி நிலையான வேகம் வைக்க. நேரம் எடுத்துக்காட்டாக, உண்மையானதாக இல்லை. ஒரு கடிகாரத்தை ஒரு நிலையான ஒரு விட மெதுவாக உண்ணி. கோட்பாட்டளவில், கடிகாரம் முற்றிலும் நிறுத்த வேண்டும், ஒளியின் வேகத்தில் சுற்றுலா மற்றும். நேரம் dilates மேலே இரண்டு சமன்பாடுகள் மூலம் கணக்கிட முடியும் எவ்வளவு. அவர்கள் பாதிக்கும் நபர் மூலம் அளவிடப்படுகிறது வலது, Δt இரண்டு நிகழ்ச்சிகளுக்கும் இடையே நேரம் இடைவெளி உள்ளது. (மேலே எங்கள் எடுத்துக்காட்டாக, இந்த ரயில் நபர் இருக்கும்.) இடது, Δt 'குறிப்பு ஒரு தனி சட்டத்தில் உள்ள ஒரு வெளியிலிருந்து பார்ப்பவர்களுக்கு மூலம் அளவிடப்படுகிறது அதே இரண்டு நிகழ்ச்சிகளுக்கும் இடையே நேரம் இடைவெளி ஆனால் (மேடையில் நபர்) . இந்த இரண்டு முறை இந்த உதாரணம் கணக்கில் எடுக்கும் என்று ஒரு கால இது லாரன்ஸ் காரணி (γ), உறவு இல்லை வேகம் (V) இது நிலையத்தில் மேடையில், ரயில் உறவினர் "ஓய்வில் இருக்கும்". இந்த வெளிப்பாடு, சி ஒரு வெற்றிடத்தில் ஒளியின் வேகம் சமமாக ஒரு மாறிலி. பொருட்களை அவர்கள் நகர இதில் திசையில் சுருக்க நகரும் நீளம். ஒளியின் வேகம் செய்யவும் (உண்மையில் முடியாது, ஆனால் நீங்கள் ஒரு கணம் முடிந்தால் கற்பனை) பொருளின் நீளம் பூஜ்யம் சுருக்கு. ஒரு நிலையான ஒரு நகரும் பொருளின் உறவினர் ஒப்பந்தம் நீளம் மூலம் சரியான நீளம் வகுப்பதன் மூலம் கணக்கிட முடியும் . லாரன்ஸ் காரணி - ஒரு பொருள் அதன் நீளம் பூஜ்யம் என்றும் சுருக்கு ஒளியின் வேகம் அடைய அது முடிந்தால் அதை நீங்கள் வேகமாக நகரும் நபர் இருந்தால், நீங்கள் எதையும் கவனிக்கவில்லை என்று குறிப்பிடுவது முக்கியமாகும்: நேரம் பொதுவாக டிக் என்று நீங்கள் மற்றும் நீங்கள் நீளம் நிராகரித்துவிட்டது. ஆனால் வான நிலையம் மேடையில் இருந்து நீங்கள் பார்த்து யாராவது லாரன்ஸ் காரணியாக இருந்து கணக்கிடப்பட்ட, வேறுபாடுகள் அளவிட முடியும். எனினும், அன்றாட பொருட்களின் மற்றும் அன்றாட வேகங்கள், லாரன்ஸ் காரணி 1 நெருக்கமாக இருக்கும் - அது சார்பியல் விளைவுகள் தீவிர கவனம் தேவை என்று ஒளி என்று நெருங்கிய வேகத்தில் மட்டுமே உள்ளது. சிறப்பு சார்பியல் இருந்து வெளிப்படுகிறது என்று மற்றொரு அம்சம் ஏதாவது வரை வேகம், என்று அதன் நிறை அதிகரிக்கும் லாரன்ஸ் காரணி அதன் மீதமுள்ள வெகுஜன பெருக்குவதன் மூலம் தீர்மானிக்கப்படுகிறது நகரும் பொருளின் நிறை ஓய்வு அதன் நிறை, ஒப்பிடுகையில். சார்பின்மை, வெகுஜன அதிகரிப்பது, நீங்கள். அது உண்மையில் வேகமாக நகர்த்த செய்யும் மிகவும் குறைந்த திறனைக் பொருள் வேகமாக வைத்து ஆற்றல் ஒவ்வொரு கூடுதல் அலகு பொருள் அதிகரிக்கிறது வேகம் மற்றும் ஒளி (இ) வேகம் பாராட்டத்தக்க உராய்வுகள் அடைய தொடங்குகிறது, பொருள் இன்னும் பாரிய செய்து வரும் எரிசக்தி பகுதியை பெரிய மற்றும் பெரிதாகிறது.








Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2024 I Love Translation. All reserved.

E-mail: