Results (
Indonesian) 1:
[Copy]Copied!
13.1 IKHTISARModul proses Markov The manajemen ilmuwan akan menganalisis prob¬lems dengan Serikat hingga 10. Input ke program adalah matriks prob¬abilities transisi untuk Serikat. Solusi ini memberikan probabilitas mapan untuk Serikat. Dalam beberapa aplikasi mungkin tidak mungkin untuk membuat transisi dari satu atau lebih negara ketika negara telah tercapai. Keadaan seperti itu disebut sebagai negara menyerap. Modul proses Markov akan memecahkan masalah yang jumlah negara menyerap dan nonabsorbing 10 atau kurang. Dalam aplikasi dengan menyerap Serikat, solusi ini memberikan kemungkinan bahwa unit saat ini di tiap negara nonabsorbing akhirnya akan berakhir di tiap negara menyerap.13.2 CONTOH MASALAHDua Toko di sebuah kota kecil bersaing untuk pelanggan. Setiap pelanggan membuat perjalanan belanja satu per minggu untuk salah satu dari dua toko. Sebuah survei toko loyalitas antara pelanggan menunjukkan bahwa untuk pelanggan yang berbelanja di Murphy Foodliner satu minggu, 90% akan berbelanja di Murphy minggu berikutnya dan 10% akan beralih ke Ashley Supermarket. Untuk pelanggan yang berbelanja di Ashley Super¬market satu minggu, 20% akan beralih ke Murphy minggu berikutnya dan 80% akan berbelanja lagi di Ashley. Probabilitas transisi ini diringkas sebagai berikut:Saat ini unduhan mingguan berikutnya belanja periodeBelanja Supermarket periode Murphy Foodliner AshleyMurphy’s Foodliner 0.9 0.1Ashley’s Supermarket 0.2 0.8What are the steady-state probabilities for the two grocery stores? If there are 1,000 customers that make weekly shopping trips to one of the two stores, how many customers can be expected to shop at each of the stores?13.3 CREATING AND SOLVING A PROBLEMTo determine the steady-state probabilities for the two grocery stores in our example problem, we begin by selecting the Markov processes module and choosing New from the File menu. When the Markov Processes dialog box appears, enter 2 for the Number of States and choose OK; the Transition Matrix data input screen will then appear. Figure 13.1 shows the Transition Matrix after entering the transition probabilities for the grocery store example problem. After selecting Solve from the Solution menu, we obtain the output shown in Figure 13.2.Figure 13.1 Transition Matrix Data Input Screen As you can see, Murphy’s Foodliner (state 1) has the higher steady-state probability. Thus, we conclude that in the long run, Murphy’s Foodliner will have a 66.7% share of the market and Ashley’s Supermarket will have the remaining 33.3% share of the market. With 1,000 weekly customers, 667 should shop at Murphy’s and 333 should shop at Ashley’s.Figure 13.2 Output for the Grocery Store Market Share Problem13.4 AN EXAMPLE PROBLEM WITH ABSORBING STATESHeidman’s Department Stores has two aging categories for its accounts receiv¬able: (1) accounts that are classified as 0 to 30 days old and (2) accounts that are classified as 31 to 90 days old. If any portion of an account balance exceeds 90 days, that portion is written off as a bad debt. The total account balance for each customer is placed in the age category corresponding to the oldest unpaid amount; hence, this method of aging accounts receivable is called the total balance method. Let us assume that Heidman’s shows a total of $3,000 in its accounts receivable and the firm’s management would like an estimate of how much of the $3,000 will eventually be collected and how much will result in bad debts. To see how we can view the accounts receivable operation as a Markov process, consider what happens to one dollar currently in accounts receivable. As the firm continues to operate into the future, we can consider each week as a trial
Being translated, please wait..
