aggregation, elimination redundant feature, or clustering, forinstance translation - aggregation, elimination redundant feature, or clustering, forinstance Indonesian how to say

aggregation, elimination redundant

aggregation, elimination redundant feature, or clustering, for
instance. By the help of this all data preprocessed techniques
we can improve the quality of data and consequently of the
mining results. Also we can improve the efficiency of mining
process.
Data preprocessing techniques helpful in OLTP (online
transaction Processing) and OLAP (online analytical
processing). Preprocessing technique is also use full for
association rules algo.like- aprior, partitional, princer search
algo and many more algos. Data preprocessing is important
stage for Data warehousing and Data mining.
[2]Many efforts are being made to analyze data using a
commercially available tool or to develop an analysis tool that
meets the requirements of a particular application. Almost all
these efforts have ignored the fact that some form of data preprocessing is usually required to intelligently analyze the data.
This means that through data pre-processing one can learn
more about the nature of the data, solve problems that may
exist in the raw data (e.g. irrelevant or missing attributes in the
data sets), change the structure of data (e.g. create levels of
granularity) to prepare the data for a more efficient and
intelligent data analysis, and solve problems such as the
problem of very large data sets. There are several different
types of problems, related to data collected from the real world,
that may have to be solved through data pre-processing.
Examples are: (i) data with missing, out of range or corrupt
elements, (ii) noisy data, (iii) data from several levels of
granularity, (iv) large data sets, data dependency, and irrelevant
data, and (v) multiple sources of data.
NEEDS
Problem with huge real-world database
 Incomplete Data :- Missing value.
 Noisy.
 Inconsistent.
[2](1)Noise refers to modification of original values
Examples:- distortion of a person’s voice when
talking on a poor phone and “snow” on television screen
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
agregasi, penghapusan berlebihan fitur atau pengelompokan, untukcontoh. Dengan bantuan ini semua data preprocessed teknikkita dapat meningkatkan kualitas data dan akibatnya darihasil tambang. Juga kita dapat meningkatkan efisiensi pertambanganproses.Data preprocessing teknik-teknik yang membantu dalam OLTP (onlinetransaksi pengolahan) dan OLAP (online analitispengolahan). Preprocessing teknik ini juga menggunakan penuh bagiAsosiasi aturan algo.like-aprior, partitional, princer Carialgo dan algos lebih banyak. Data preprocessing pentingtahap untuk Data pergudangan dan Data pertambangan.[2] Banyak upaya yang dilakukan untuk menganalisis data menggunakanalat yang tersedia secara komersial atau untuk mengembangkan analisis alat yangmemenuhi persyaratan aplikasi tertentu. Hampir semuaupaya ini telah mengabaikan fakta bahwa beberapa bentuk data preprocessing biasanya diperlukan untuk cerdas menganalisis data.Ini berarti bahwa melalui data pra-pemrosesan satu dapat belajarlebih lanjut tentang sifat data, memecahkan masalah yang mungkinada di data mentah (misalnya tidak relevan atau hilang atribut didata set), mengubah struktur data (misalnya membuat tingkatgranularity) untuk mempersiapkan data yang lebih efisien dananalisis data cerdas, dan memecahkan masalah sepertimasalah sangat besar set data. Ada beberapa yang berbedajenis masalah yang terkait dengan data yang dikumpulkan dari dunia nyata,yang mungkin harus diselesaikan melalui pra-pengolahan data.Contoh: (i) data dengan hilang, di luar jangkauan atau korupunsur-unsur, data berisik (ii), (iii) data dari beberapa tingkatgranularity, kumpulan data besar (iv), data yang ketergantungan, dan tidak relevandata, dan (v) beberapa sumber data.KEBUTUHANMasalah dengan database besar dunia nyata Data yang tidak lengkap:-nilai yang hilang. berisik. tidak konsisten.[2] (1) Kebisingan mengacu pada modifikasi dari nilai-nilai asliContoh:-distorsi seseorang yang suara ketikaberbicara di telepon miskin dan "salju" pada layar televisi
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
agregasi, penghapusan fitur berlebihan, atau clustering, untuk
misalnya. Dengan bantuan ini teknik semua data preprocessed
kita dapat meningkatkan kualitas data dan akibatnya dari
hasil pertambangan. Juga kita dapat meningkatkan efisiensi pertambangan
proses.
Teknik data preprocessing membantu dalam OLTP (secara online
Pengolahan transaksi) dan OLAP (secara online analitis
pengolahan). Teknik preprocessing juga menggunakan penuh untuk
asosiasi aturan aprior algo.like-, partitional, princer pencarian
algo dan lebih banyak algos. Data preprocessing penting
tahap untuk pergudangan Data dan Data mining.
[2] Banyak upaya yang dilakukan untuk menganalisis data menggunakan
alat yang tersedia secara komersial atau untuk mengembangkan alat analisis yang
memenuhi persyaratan aplikasi tertentu. Hampir semua
upaya ini telah mengabaikan fakta bahwa beberapa bentuk data preprocessing biasanya diperlukan untuk cerdas menganalisis data.
Ini berarti bahwa melalui data pra-pengolahan seseorang dapat belajar
lebih banyak tentang sifat data, memecahkan masalah yang mungkin
ada dalam baku data (misalnya tidak relevan atau atribut dalam hilang
data set), mengubah struktur data (misalnya membuat tingkat
granularity) untuk mempersiapkan data untuk lebih efisien dan
analisis data yang cerdas, dan memecahkan masalah seperti
masalah set data yang sangat besar . Ada beberapa yang berbeda
jenis masalah, terkait dengan data yang dikumpulkan dari dunia
nyata,. Yang mungkin harus dipecahkan melalui data pra-pengolahan
Contohnya adalah: (i) data dengan hilang, di luar jangkauan atau rusak
elemen, (ii) bising data, (iii) data dari beberapa tingkat
granularity, (iv) set data yang besar, ketergantungan data, dan tidak
relevan. data, dan (v) berbagai sumber data
KEBUTUHAN
masalah dengan besar database real-dunia
 data tidak lengkap: - Hilang nilai
..  Bising
 konsisten.
[2] (1) Kebisingan mengacu modifikasi nilai-nilai asli
Contoh: - distorsi suara seseorang ketika
berbicara di telepon miskin dan "salju" di layar televisi
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: