to generalise to a specific subpopulation that is too small to be reli translation - to generalise to a specific subpopulation that is too small to be reli Indonesian how to say

to generalise to a specific subpopu

to generalise to a specific subpopulation that is too small to be reliably
picked up in any but the largest of samples. We might, for example, want
to compare the well-being of students in private and state-run schools.
Taking a random sample of 1,000 pupils may leave us with only a very
small group of students in private schools. Therefore, to ensure a suitably
large number in both, we might want to use stratified random sampling.
Doing this involves first dividing the population into the groups we
want to study, in this case private and state-school attendees, and then
randomly sampling from each group separately, so we would obtain a
sample of 500 pupils in private and 500 in state-run schools.
Sometimes, we may want to ensure that different subgroups are represented
in our sample in accordance with their presence in the
population. Again, unless you take a very large sample, this will be difficult
to achieve for small subgroups. Therefore, we sometimes specify in
advance what proportion of those groups we want to have in our sample
and sample until that quota is fulfilled. For example, we may have a population
in which 10 per cent of pupils are of Afro-Caribbean descent. In
quota sampling, as this method is called, we will sample Afro-Caribbeans
until we have reached our quota, in this case 10 per cent of 1,000, or 100
Afro-Caribbeans.
Another reason not to use simple random sampling lies in the problem
of being able to draw conclusions about sites in which members of the
population are nested. For example, in educational research we are often
interested in things happening in schools, or school effects, and how these
may influence students in those schools. Saying anything about school (or
classroom teaching) effects would be difficult if we used simple random
sampling. Even if we were to have a large sample of 100 students, it is
likely that they would be spread over a very large number of schools,
meaning that in most cases we would have one pupil or maybe two in any
given school. Obviously, it would be nonsensical to extrapolate effects of
the school or teacher from findings on one pupil in that school! Therefore,
when we want to look at school effects we will usually sample schools randomly,
and then survey all pupils in that school. More generally, using
cluster sampling we will randomly sample higher-level sites in which members
of the population are clustered, and then survey all respondents in
those sites. A related method is multistage sampling in which we first
sample higher-level sites (e.g. local education authorities) at random, then
randomly sample a lower stage (e.g. schools in those LEAs), and then randomly
sample members of the population in that stage (e.g. pupils within
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
to generalise to a specific subpopulation that is too small to be reliablypicked up in any but the largest of samples. We might, for example, wantto compare the well-being of students in private and state-run schools.Taking a random sample of 1,000 pupils may leave us with only a verysmall group of students in private schools. Therefore, to ensure a suitablylarge number in both, we might want to use stratified random sampling.Doing this involves first dividing the population into the groups wewant to study, in this case private and state-school attendees, and thenrandomly sampling from each group separately, so we would obtain asample of 500 pupils in private and 500 in state-run schools.Sometimes, we may want to ensure that different subgroups are representedin our sample in accordance with their presence in thepopulation. Again, unless you take a very large sample, this will be difficultto achieve for small subgroups. Therefore, we sometimes specify inadvance what proportion of those groups we want to have in our sampleand sample until that quota is fulfilled. For example, we may have a populationin which 10 per cent of pupils are of Afro-Caribbean descent. Inquota sampling, as this method is called, we will sample Afro-Caribbeansuntil we have reached our quota, in this case 10 per cent of 1,000, or 100Afro-Caribbeans.Another reason not to use simple random sampling lies in the problemof being able to draw conclusions about sites in which members of thepopulation are nested. For example, in educational research we are ofteninterested in things happening in schools, or school effects, and how thesemay influence students in those schools. Saying anything about school (orclassroom teaching) effects would be difficult if we used simple randomsampling. Even if we were to have a large sample of 100 students, it islikely that they would be spread over a very large number of schools,meaning that in most cases we would have one pupil or maybe two in anygiven school. Obviously, it would be nonsensical to extrapolate effects ofthe school or teacher from findings on one pupil in that school! Therefore,when we want to look at school effects we will usually sample schools randomly,and then survey all pupils in that school. More generally, usingcluster sampling we will randomly sample higher-level sites in which membersof the population are clustered, and then survey all respondents inthose sites. A related method is multistage sampling in which we firstsample higher-level sites (e.g. local education authorities) at random, thenrandomly sample a lower stage (e.g. schools in those LEAs), and then randomlysample members of the population in that stage (e.g. pupils within
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
untuk menggeneralisasi untuk subpopulasi tertentu yang terlalu kecil untuk andal
dijemput di salah tapi yang terbesar dari sampel. Kita mungkin, misalnya, ingin
membandingkan kesejahteraan siswa di sekolah swasta dan dikelola negara.
Mengambil sampel acak dari 1.000 siswa mungkin meninggalkan kita dengan hanya sangat
sekelompok kecil siswa di sekolah swasta. Oleh karena itu, untuk memastikan sesuai
jumlah besar di kedua, kita mungkin ingin menggunakan stratified random sampling.
Melakukan hal ini melibatkan pertama membagi populasi ke dalam kelompok kita
ingin belajar, dalam hal ini peserta swasta dan negara-sekolah, dan kemudian
secara acak sampel dari masing-masing kelompok secara terpisah, sehingga kita akan mendapatkan
sampel dari 500 siswa di swasta dan 500 di sekolah-sekolah yang dikelola negara.
Kadang-kadang, kita mungkin ingin memastikan bahwa subkelompok yang berbeda diwakili
dalam sampel kami sesuai dengan kehadiran mereka di
populasi. Sekali lagi, kecuali jika Anda mengambil sampel yang sangat besar, ini akan sulit
untuk mencapai untuk subkelompok kecil. Oleh karena itu, kadang-kadang kita tentukan di
muka berapa proporsi kelompok-kelompok yang ingin kita miliki dalam sampel kami
dan sampel sampai kuota yang terpenuhi. Sebagai contoh, kita mungkin memiliki populasi
di mana 10 persen dari murid adalah keturunan Afro-Karibia. Dalam
quota sampling, karena metode ini disebut, kita akan mencicipi Afro-Karibia
sampai kita telah mencapai kuota kami, dalam hal ini kasus 10 persen dari 1.000, atau 100
Afro-Karibia.
Alasan lain untuk tidak menggunakan simple random sampling terletak di masalah
untuk dapat menarik kesimpulan tentang situs di mana anggota
populasi yang bersarang. Misalnya, dalam penelitian pendidikan kita sering
tertarik pada hal-hal yang terjadi di sekolah, atau efek sekolah, dan bagaimana ini
dapat mempengaruhi siswa di sekolah-sekolah. Mengatakan apa-apa tentang sekolah (atau
mengajar di kelas) efek akan sulit jika kita menggunakan simple random
sampling. Bahkan jika kita memiliki sampel besar dari 100 siswa, itu adalah
mungkin bahwa mereka akan tersebar di sejumlah sangat besar dari sekolah,
yang berarti bahwa dalam banyak kasus kita akan memiliki satu murid atau mungkin dua di setiap
sekolah diberikan. Jelas, itu akan masuk akal untuk memperkirakan efek dari
sekolah atau guru dari temuan pada satu murid di sekolah itu! Oleh karena itu,
ketika kita ingin melihat efek sekolah kita akan sekolah biasanya sampel secara acak,
dan kemudian survei semua siswa di sekolah itu. Lebih umum, menggunakan
cluster sampling kita akan secara acak sampel situs-tingkat yang lebih tinggi di mana anggota
dari populasi yang berkerumun, dan kemudian survei semua responden di
situs tersebut. Sebuah metode yang terkait adalah multistage sampling yang pertama kali kita
sampel situs-tingkat yang lebih tinggi (misalnya otoritas pendidikan setempat) secara acak, kemudian
secara acak sampel tahap yang lebih rendah (misalnya sekolah pada mereka LEA), dan kemudian secara acak
anggota sampel dari populasi di tahap itu ( misalnya siswa dalam
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: