(i.e. on perceptions, estimations, heuristics and simplifications); (4 translation - (i.e. on perceptions, estimations, heuristics and simplifications); (4 Indonesian how to say

(i.e. on perceptions, estimations,

(i.e. on perceptions, estimations, heuristics and simplifications); (4) many “soft”
factors (e.g. image, politics).
While these characteristics make strategic decisions very difficult, such decisions
are nevertheless usually very important at the same time. Therefore, trial-and-error
decision making is rather dangerous. Simulations that support decision making in
the strategic area are called “strategic simulations.” Strategic simulations try to
combine the clarity and generality of mathematical modeling with the practical
relevance and external validity of empirical research. A drawback is that strategic
simulations do not necessarily provide optimal solutions or make it easy to find
such solutions. Furthermore, the development and the analysis of strategic simulation
models is – at least partially – still more an art than a technique, depending
heavily on the skills, experience and creativity of the modeler.
In principle, modeling and simulation make it possible to examine the dynamic
behavior of supply chains. Feedback loops, time delays and accumulations are a
few of the most prominent structural causes of counter-intuitive dynamic behavior.
Even relatively simple supply chain structures lead individuals to systematically
make sub-optimal decisions due to the chain’s inherent feedback loops (e.g.
between orders and incoming goods) and delays (e.g. order processing times). The
(negative) effect of feedback loops and delays on decision makers’ performance
has been demonstrated in various studies (Brehmer, 1992; Dörner, 1996). Simulation
experiments allow for systematic investigations of cause-effect relationships
that are separated by space and time, extreme conditions, and situations which
cannot be observed in reality because of the costs or risks involved. Another reason
for the use of simulations is the possibility to replicate the initial situation
(Pidd, 1993). Finally, modeling and simulation are sometimes seen as the primary
way towards scientific progress due to the inherent complexity of reality that
makes direct conclusions from empirical observations questionable (McKelvey,
1999).
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
(i.e. on perceptions, estimations, heuristics and simplifications); (4) many “soft”factors (e.g. image, politics).While these characteristics make strategic decisions very difficult, such decisionsare nevertheless usually very important at the same time. Therefore, trial-and-errordecision making is rather dangerous. Simulations that support decision making inthe strategic area are called “strategic simulations.” Strategic simulations try tocombine the clarity and generality of mathematical modeling with the practicalrelevance and external validity of empirical research. A drawback is that strategicsimulations do not necessarily provide optimal solutions or make it easy to findsuch solutions. Furthermore, the development and the analysis of strategic simulationmodels is – at least partially – still more an art than a technique, dependingheavily on the skills, experience and creativity of the modeler.In principle, modeling and simulation make it possible to examine the dynamicbehavior of supply chains. Feedback loops, time delays and accumulations are afew of the most prominent structural causes of counter-intuitive dynamic behavior.Even relatively simple supply chain structures lead individuals to systematicallymake sub-optimal decisions due to the chain’s inherent feedback loops (e.g.between orders and incoming goods) and delays (e.g. order processing times). The(negative) effect of feedback loops and delays on decision makers’ performancehas been demonstrated in various studies (Brehmer, 1992; Dörner, 1996). Simulation
experiments allow for systematic investigations of cause-effect relationships
that are separated by space and time, extreme conditions, and situations which
cannot be observed in reality because of the costs or risks involved. Another reason
for the use of simulations is the possibility to replicate the initial situation
(Pidd, 1993). Finally, modeling and simulation are sometimes seen as the primary
way towards scientific progress due to the inherent complexity of reality that
makes direct conclusions from empirical observations questionable (McKelvey,
1999).
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
(yaitu persepsi, estimasi, heuristik dan penyederhanaan); (4) banyak "lunak"
faktor (misalnya gambar, politik).
Sementara karakteristik ini membuat keputusan strategis sangat sulit, keputusan tersebut
tetap saja biasanya sangat penting pada saat yang sama. Oleh karena itu, percobaan-dan-kesalahan
pengambilan keputusan agak berbahaya. Simulasi yang mendukung pengambilan keputusan di
daerah strategis disebut "simulasi strategis." Simulasi Strategis mencoba untuk
menggabungkan kejelasan dan umum dari pemodelan matematika dengan praktis
relevansi dan validitas eksternal penelitian empiris. Kelemahan adalah bahwa strategis
simulasi tidak selalu memberikan solusi yang optimal atau membuatnya mudah untuk menemukan
solusi tersebut. Selanjutnya, pengembangan dan analisis simulasi strategis
model adalah - setidaknya sebagian - masih lebih merupakan seni daripada teknik, tergantung
. Berat pada keterampilan, pengalaman dan kreativitas pemodel
Pada prinsipnya, pemodelan dan simulasi memungkinkan untuk memeriksa dinamis
perilaku rantai pasokan. Loop umpan balik, waktu penundaan dan akumulasi adalah
beberapa penyebab struktural yang paling menonjol dari perilaku dinamis kontra-intuitif.
Bahkan struktur rantai pasokan yang relatif sederhana menyebabkan individu untuk secara sistematis
membuat keputusan sub-optimal karena umpan balik yang melekat rantai loop (misalnya
antara perintah dan masuk barang) dan penundaan (misalnya pemrosesan order kali). The
efek (negatif) dari loop umpan balik dan penundaan pada kinerja pengambil keputusan '
telah dibuktikan dalam berbagai penelitian (Brehmer, 1992; Dorner, 1996). Simulasi
percobaan memungkinkan untuk penyelidikan sistematis hubungan sebab-akibat
yang dipisahkan oleh ruang dan waktu, kondisi ekstrim, dan situasi yang
tidak dapat diamati dalam kenyataannya karena biaya atau risiko yang terlibat. Alasan lain
untuk penggunaan simulasi adalah kemungkinan untuk meniru situasi awal
(Pidd, 1993). Akhirnya, pemodelan dan simulasi kadang-kadang dilihat sebagai utama
jalan menuju kemajuan ilmiah karena kompleksitas yang melekat dari realitas yang
membuat kesimpulan langsung dari pengamatan empiris dipertanyakan (McKelvey,
1999).
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: