6. ConclusionsThe presented algorithm has strong potential for regiona translation - 6. ConclusionsThe presented algorithm has strong potential for regiona Indonesian how to say

6. ConclusionsThe presented algorit

6. Conclusions
The presented algorithm has strong potential for regional- and
ecosystem-specific burned area mapping applications. The
algorithm is based on readily available operational MODIS
products which ensure the availability of input data for various
users. The application of this algorithm allows for the creation of
a long-term (based on the MODIS data record length) record of
fire effects over large areas. As a semi-automated algorithm, this
approach ensures consistent estimates of burned area over time.
At the same time, the flexibility of the approach presents an
opportunity to adapt burned area mapping to the regional
specifics of vegetation composition and structure and fire regime.
In addition to the binary burned/unburned mask, the
algorithm preserves the variability of change in surface
reflectance compared to the pre-burn conditions, which provides
valuable information about characteristics of burning and fire
impact. While dNBR may not be a suitable index for burn
severity assessment across various ecosystems, its variability
within an individual fire scar may provide comparative
estimates of fire impacts on a given area. The recorded spectral
signature of the dNBR index may prove useful to differentiate
fire impact severity levels within a single ecosystem or a single
fire scar with proper field validation. However, additional work
in developing understanding of dNBR as a measure of fire
impact on land surface and severity is necessary.
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
6. ConclusionsThe presented algorithm has strong potential for regional- andecosystem-specific burned area mapping applications. Thealgorithm is based on readily available operational MODISproducts which ensure the availability of input data for varioususers. The application of this algorithm allows for the creation ofa long-term (based on the MODIS data record length) record offire effects over large areas. As a semi-automated algorithm, thisapproach ensures consistent estimates of burned area over time.At the same time, the flexibility of the approach presents anopportunity to adapt burned area mapping to the regionalspecifics of vegetation composition and structure and fire regime.In addition to the binary burned/unburned mask, thealgorithm preserves the variability of change in surfacereflectance compared to the pre-burn conditions, which providesvaluable information about characteristics of burning and fireimpact. While dNBR may not be a suitable index for burnseverity assessment across various ecosystems, its variabilitywithin an individual fire scar may provide comparativeestimates of fire impacts on a given area. The recorded spectralsignature of the dNBR index may prove useful to differentiatefire impact severity levels within a single ecosystem or a singlefire scar with proper field validation. However, additional workin developing understanding of dNBR as a measure of fireimpact on land surface and severity is necessary.
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
6. Kesimpulan
Algoritma disajikan memiliki potensi kuat untuk regional semakin dan
daerah dibakar aplikasi pemetaan ekosistem tertentu. The
algoritma didasarkan pada tersedia MODIS operasional
produk yang menjamin ketersediaan input data untuk berbagai
pengguna. Penerapan algoritma ini memungkinkan untuk penciptaan
sebuah jangka panjang (berdasarkan MODIS data panjang record) catatan
efek api di daerah yang luas. Sebagai algoritma semi-otomatis, ini
pendekatan memastikan perkiraan konsisten area yang terbakar dari waktu ke waktu.
Pada saat yang sama, fleksibilitas pendekatan menyajikan
kesempatan untuk beradaptasi pemetaan wilayah dibakar ke daerah
spesifik dari komposisi vegetasi dan struktur dan rezim api.
Dalam Selain biner dibakar / terbakar mask,
algoritma mempertahankan variabilitas perubahan di permukaan
pantulan dibandingkan dengan kondisi pra-bakar, yang memberikan
informasi berharga tentang karakteristik pembakaran dan kebakaran
dampak. Sementara DNBR mungkin tidak indeks cocok untuk membakar
penilaian keparahan di berbagai ekosistem, variabilitas
dalam suatu bekas luka api individu dapat memberikan perbandingan
perkiraan dampak kebakaran pada area tertentu. Spektral mencatat
tanda tangan dari indeks DNBR mungkin berguna untuk membedakan
tingkat dampak kebakaran keparahan dalam ekosistem tunggal atau satu
bekas luka api dengan validasi lapangan yang tepat. Namun, pekerjaan tambahan
dalam mengembangkan pemahaman DNBR sebagai ukuran api
berdampak pada permukaan tanah dan tingkat keparahan diperlukan.
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: