ThailandAs. J. Food Ag-Ind. 2009, 2(04), 731-743 732IntroductionOrgani translation - ThailandAs. J. Food Ag-Ind. 2009, 2(04), 731-743 732IntroductionOrgani Indonesian how to say

ThailandAs. J. Food Ag-Ind. 2009, 2

Thailand
As. J. Food Ag-Ind. 2009, 2(04), 731-743 732
Introduction
Organic agriculture is an ecological production management system that promotes and
enhances biodiversity, biological cycles and soil biological activity. It is based on minimal use
of off-farm inputs and on management practices that restore, maintain and enhance ecological
harmony [1]. The organic farming is characterized by the prohibition of a majority of
synthetic chemicals in both crop and livestock production [2]. The term “conventional”
farming is also referred to as regular farming system which is widely applied to any nonorganic
farming system and relies on external inputs to achieve high production yields [2].
The organic agricultural is wide ranging and overall seek to promote the development of a
food production system that is socially, ecologically, and economically sustainable. The key
principles and practices of organic food production aim to encourage and enhance biological
cycles within the farming system to maintain and increase long-term fertility of soils, to
minimize all forms of pollution, to avoid the use of synthetic fertilizers and pesticides, to
maintain genetic diversity of the production system, to consider the wider social and
ecological impact of the food production and processing system, and to produce food of high
quality in sufficient quantity [3].
Consumers demand organic products because they believe they are more flavorful and
respectful to the environment and human health. However, there is still having some
controversies over the perceived quality advantage of organically grown foods. Several
studies with organic and conventional food productions have been conducted including
potato, wheat, rye, and a number of fruits and vegetables as well as meat products as shown in
Table 1 [3].
Barrett et al., [4] studied organically grown tomatoes focusing on commercial production of
processing tomatoes, with compared organic and conventional fields. The results indicated
that tomato juice prepared from organic on some farms was significantly higher in soluble
solids (degrees Brix), higher in consistency, and titratable acidity. Mitchell et al.,[5] reported
a ten years research on the influence of organic and conventional crop management practices
on the content of flavonoids in tomatoes. Comparisons of analyses of archived samples from
conventional and organic production systems demonstrated statistically higher levels (P <
0.05) of quercetin and kaempferol aglycones in organic tomatoes. Perez-Lopez et al., [6]
indicated the effects of conventional, integrated, and organic farming on color, minerals, and
carotenoids of sweet pepper fruits (Capsicum annuum), cv. Almuden. The experimental
results proved that organic farming provided peppers with the highest intensities of red and
yellow colors, contents of minerals, total carotenoids, and finally, organic red peppers was
considered as those having the highest antioxidant activity of all studied peppers (agricultural
farming and development stage).
As. J. Food Ag-Ind. 2009, 2(04), 731-743 733
Table 1. Summary of studies comparing the nutritional value and general quality of
organically and conventionally grown food as purchased from retailers.
Study Products tested Study design Nutrients
analyzed
Key results
Anon Green bean,
tomatoes,
capsicum, silverbeet
Samples from certified
organic farm and
supermarket
Ca, K, mg,
Na, Fe, Zn,
Vitamin C,
carotene
Vitamin C and carotene
levels similar in organic
and conventional produce;
mineral levels were higher
in all organic products
Cooklin
and
Thomson
Tomatoes,
potatoes, sweet
pepper, carrots,
lettuce, apples,
grapes
organic and conventional
samples from 5 retail outlets
each week (18 week period),
over 80% of organic products
labeled as certified
Visible
quality
characteristics
(bruises,
tearing, insect
damage,
discoloration)
Visible quality of organic
and conventional products
was frequently
indistinguishable. Organic
carrot, leaf lettuce, pepper,
and potatoes had more
defects.
Pither and
Hall
Apples, carrots,
green cabbage,
potatoes,
tomatoes
Products were purchased from
variety of retailers, 30 sample
each of organic and
conventional
Moisture,
total solids,
vitamin C,
sugar, starch,
Fe, Zn, K
Results were variable,
apples: vitamin C higher in
organic, Sugars and vitamin
C higher in conventional
carrots, green cabbage,
potatoes, tomatoes
Smith Apples, pears,
potatoes, wheat,
sweetcorn, baby
food
Samples were purchased over
two years from stores
Range of
minerals
Higher levels of some
minerals in all organic
products except baby food.
Source: [3]
Recently the popularity of organic rice has increased in many regions around the world even
though the organic rice market remains relatively immature. The decreased cost of production
per acre and environmentally-friendly production methods have become appealing to some
producers. However the effect of farming practice on production yields, chemical
compositions, bioactive components compared to conventional production have been still a
question for most producers. Rice is consumed as a whole kernel which commonly produced
by milling and leaving a rice bran as a by-product. It corresponds to approximately 10 % of
the total rice grain [7,8] and the potential of producing rice bran at the global level is 27.3
million tonnes [3]. Although rice bran is a good source of proteins, dietetic fibers and
functional compounds such as oryzanol and vitamin E [7,9,10], rice bran is at present
underutilized as a food material. It basically is used for animal feed; only small portion is
used for human consumption and mainly used for rice bran oil production. Rice bran is the
source of a high quality vegetable oil (rice bran oil, RBO), which has attracted much medical
attention due to its strong hypocholesterolemic properties primarily attributable to its balanced
fatty acid composition and high levels of antioxidant phytochemicals such as oryzanols,
tocopherols and tocotrienols [11,12]. Rice bran oil extraction produces deoiled or defatted
meal as the by-product in large quantities per year. Defatted rice bran, a by-product of rice
bran oil extraction, is a good source of insoluble dietary fibre [13], protein, phytic acid,
inositol and vitamin B [14,15]. The main objective of the present study was to investigate the
effect of growing system on chemical compositions and antioxidant efficacy of rice bran and
defatted rice bran.
As. J. Food Ag-Ind. 2009, 2(04), 731-743 734
Materials and Methods
Chemicals
Standard α- tocopherol was purchased from Sigma-Aldrich Chemical Co., (St. Louis, Mo,
USA). HPLC grade methanol, acetonitrile, hexane, ethyl acetate and ethanol were purchased
from BHD (Poole, UK). γ- Oryzanol standard was purchased from Tsuno food industrial Co.,
Ltd. (Wakayama, Japan) Gallic acid, 1, 1-diphenyl-2- picrylhydrazyl (DPPH), butylated
hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) were obtained from Fluka
Chemical (Buchs, Switzerland). All chemicals and reagents were an analytical grade.
Rice bran samples
The samples of rice bran were obtained from the milling of rough rice of Oryza stiva L. CV.
Khao Dawk Mali-105. The organic rice bran (ORB) was from organic rough rice grown in
certified organic farming in Surin province, Thailand. The conventional rice bran (CRB) was
from rough rice grown under a conventional practice. Both types of samples were harvested in
2008 crop year. Rough rice was de-hulled and milled to yield the rice bran with degree of
milling of 8%.
Preparation of rice bran
Rice bran was stabilized using ohmic heating was applied by following the method described
by [16,17] with some modifications. The bran (180g) were added with deionized water to
reach moisture content of 30 % wet basis and then placed in the ohmic heating unit (lab
scale). The electrical field strength of 150 V/cm at a frequency of 50 Hz were applied to
obtain the temperature at 105ºC and then rice bran was cooled to room temperature and kept
in polyethylene(zipper-top) at -25ºC until use.
Rice bran oil extraction and defatted rice bran preparation
Rice bran oil extraction using hexane
The hexane extraction was carried out by using the Soxhlet method following the method of
[18]. The rice bran was placed into thimble paper cone using n-hexane solvent in soxhlet
extractor and extracted for 2 h. The oil was separated and then defatted rice bran remained in
the chamber was collected and dried in oven. Defatted rice bran low temperature (-25ºC) until
analysis.
Rice bran oil extraction using enzymes
The extraction was done according to the method reported by [ 19] with few modifications.
The rice bran was added with distilled water (rice bran to water ratio 1:5 w/v), the pH was
adjusted to 4.75 with 0.1 N HCL and then cellulose and hemicellulase were added. The
mixture was incubated at 37ºC for 3 hr in shaking water bath at 80 rpm [20]. After that, the
pH was adjusted to 7.0 with 0.1 N NaOH, and then α-amylase and protease were added into
the slurry (40ºC) with shaking for 18 h (overnight). The oil was recovered by heating on hot
plate at 50ºC for 30 min, centrifuged at 8000 rpm (4ºC) for 20 min and frozen prior to
scraping and collecting the crude rice bran oil. The residual meal was defatted rice bran,
which was dried overnight at 85±2ºC in hot air oven. The defatted rice bran was kept in low
temperature (-25ºC) until use. The rice bran and defatted rice bran samples were used to
analyze proximate components, bioactive compounds and antioxidant activity.
As. J. Food Ag-Ind. 2009, 2(04), 731-743 735
Determination of proximate compositions
The proximate composition analyses were determined by following the methods of AOAC
[18]. Reducing sugar was determined by the method reported by Miller [21].
Extraction of rice bran
Finely ground bran samples (5.0g) were extracted in 80% methanol (25 mL) by placing the
mixture in a sonicator for 10 minutes. The mixture was filtered and residue was subjected to
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
ThailandAs. J. Food Ag-Ind. 2009, 2(04), 731-743 732IntroductionOrganic agriculture is an ecological production management system that promotes andenhances biodiversity, biological cycles and soil biological activity. It is based on minimal useof off-farm inputs and on management practices that restore, maintain and enhance ecologicalharmony [1]. The organic farming is characterized by the prohibition of a majority ofsynthetic chemicals in both crop and livestock production [2]. The term “conventional”farming is also referred to as regular farming system which is widely applied to any nonorganicfarming system and relies on external inputs to achieve high production yields [2].The organic agricultural is wide ranging and overall seek to promote the development of afood production system that is socially, ecologically, and economically sustainable. The keyprinciples and practices of organic food production aim to encourage and enhance biologicalcycles within the farming system to maintain and increase long-term fertility of soils, tominimize all forms of pollution, to avoid the use of synthetic fertilizers and pesticides, tomaintain genetic diversity of the production system, to consider the wider social andecological impact of the food production and processing system, and to produce food of highquality in sufficient quantity [3].Consumers demand organic products because they believe they are more flavorful andrespectful to the environment and human health. However, there is still having somecontroversies over the perceived quality advantage of organically grown foods. Severalstudies with organic and conventional food productions have been conducted includingpotato, wheat, rye, and a number of fruits and vegetables as well as meat products as shown inTable 1 [3].Barrett et al., [4] studied organically grown tomatoes focusing on commercial production ofprocessing tomatoes, with compared organic and conventional fields. The results indicatedthat tomato juice prepared from organic on some farms was significantly higher in solublesolids (degrees Brix), higher in consistency, and titratable acidity. Mitchell et al.,[5] reporteda ten years research on the influence of organic and conventional crop management practiceson the content of flavonoids in tomatoes. Comparisons of analyses of archived samples fromconventional and organic production systems demonstrated statistically higher levels (P <0.05) of quercetin and kaempferol aglycones in organic tomatoes. Perez-Lopez et al., [6]indicated the effects of conventional, integrated, and organic farming on color, minerals, andcarotenoids of sweet pepper fruits (Capsicum annuum), cv. Almuden. The experimentalresults proved that organic farming provided peppers with the highest intensities of red andyellow colors, contents of minerals, total carotenoids, and finally, organic red peppers wasconsidered as those having the highest antioxidant activity of all studied peppers (agriculturalfarming and development stage).As. J. Food Ag-Ind. 2009, 2(04), 731-743 733Table 1. Summary of studies comparing the nutritional value and general quality oforganically and conventionally grown food as purchased from retailers.Study Products tested Study design NutrientsanalyzedKey resultsAnon Green bean,tomatoes,capsicum, silverbeetSamples from certifiedorganic farm andsupermarketCa, K, mg,Na, Fe, Zn,Vitamin C,caroteneVitamin C and carotenelevels similar in organicand conventional produce;mineral levels were higherin all organic productsCooklinandThomsonTomatoes,potatoes, sweetpepper, carrots,lettuce, apples,grapesorganic and conventionalsamples from 5 retail outletseach week (18 week period),over 80% of organic productslabeled as certifiedVisiblequalitycharacteristics(bruises,tearing, insectdamage,discoloration)Visible quality of organicand conventional productswas frequentlyindistinguishable. Organiccarrot, leaf lettuce, pepper,and potatoes had moredefects.Pither andHallApples, carrots,green cabbage,potatoes,tomatoesProducts were purchased fromvariety of retailers, 30 sampleeach of organic andconventionalMoisture,total solids,vitamin C,sugar, starch,Fe, Zn, KResults were variable,apples: vitamin C higher inorganic, Sugars and vitaminC higher in conventionalcarrots, green cabbage,potatoes, tomatoesSmith Apples, pears,potatoes, wheat,sweetcorn, babyfoodSamples were purchased overtwo years from storesRange ofmineralsHigher levels of someminerals in all organicproducts except baby food.Source: [3]Recently the popularity of organic rice has increased in many regions around the world eventhough the organic rice market remains relatively immature. The decreased cost of productionper acre and environmentally-friendly production methods have become appealing to someproducers. However the effect of farming practice on production yields, chemicalcompositions, bioactive components compared to conventional production have been still aquestion for most producers. Rice is consumed as a whole kernel which commonly producedby milling and leaving a rice bran as a by-product. It corresponds to approximately 10 % ofthe total rice grain [7,8] and the potential of producing rice bran at the global level is 27.3million tonnes [3]. Although rice bran is a good source of proteins, dietetic fibers andfunctional compounds such as oryzanol and vitamin E [7,9,10], rice bran is at presentunderutilized as a food material. It basically is used for animal feed; only small portion isused for human consumption and mainly used for rice bran oil production. Rice bran is thesource of a high quality vegetable oil (rice bran oil, RBO), which has attracted much medicalattention due to its strong hypocholesterolemic properties primarily attributable to its balancedfatty acid composition and high levels of antioxidant phytochemicals such as oryzanols,
tocopherols and tocotrienols [11,12]. Rice bran oil extraction produces deoiled or defatted
meal as the by-product in large quantities per year. Defatted rice bran, a by-product of rice
bran oil extraction, is a good source of insoluble dietary fibre [13], protein, phytic acid,
inositol and vitamin B [14,15]. The main objective of the present study was to investigate the
effect of growing system on chemical compositions and antioxidant efficacy of rice bran and
defatted rice bran.
As. J. Food Ag-Ind. 2009, 2(04), 731-743 734
Materials and Methods
Chemicals
Standard α- tocopherol was purchased from Sigma-Aldrich Chemical Co., (St. Louis, Mo,
USA). HPLC grade methanol, acetonitrile, hexane, ethyl acetate and ethanol were purchased
from BHD (Poole, UK). γ- Oryzanol standard was purchased from Tsuno food industrial Co.,
Ltd. (Wakayama, Japan) Gallic acid, 1, 1-diphenyl-2- picrylhydrazyl (DPPH), butylated
hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) were obtained from Fluka
Chemical (Buchs, Switzerland). All chemicals and reagents were an analytical grade.
Rice bran samples
The samples of rice bran were obtained from the milling of rough rice of Oryza stiva L. CV.
Khao Dawk Mali-105. The organic rice bran (ORB) was from organic rough rice grown in
certified organic farming in Surin province, Thailand. The conventional rice bran (CRB) was
from rough rice grown under a conventional practice. Both types of samples were harvested in
2008 crop year. Rough rice was de-hulled and milled to yield the rice bran with degree of
milling of 8%.
Preparation of rice bran
Rice bran was stabilized using ohmic heating was applied by following the method described
by [16,17] with some modifications. The bran (180g) were added with deionized water to
reach moisture content of 30 % wet basis and then placed in the ohmic heating unit (lab
scale). The electrical field strength of 150 V/cm at a frequency of 50 Hz were applied to
obtain the temperature at 105ºC and then rice bran was cooled to room temperature and kept
in polyethylene(zipper-top) at -25ºC until use.
Rice bran oil extraction and defatted rice bran preparation
Rice bran oil extraction using hexane
The hexane extraction was carried out by using the Soxhlet method following the method of
[18]. The rice bran was placed into thimble paper cone using n-hexane solvent in soxhlet
extractor and extracted for 2 h. The oil was separated and then defatted rice bran remained in
the chamber was collected and dried in oven. Defatted rice bran low temperature (-25ºC) until
analysis.
Rice bran oil extraction using enzymes
The extraction was done according to the method reported by [ 19] with few modifications.
The rice bran was added with distilled water (rice bran to water ratio 1:5 w/v), the pH was
adjusted to 4.75 with 0.1 N HCL and then cellulose and hemicellulase were added. The
mixture was incubated at 37ºC for 3 hr in shaking water bath at 80 rpm [20]. After that, the
pH was adjusted to 7.0 with 0.1 N NaOH, and then α-amylase and protease were added into
the slurry (40ºC) with shaking for 18 h (overnight). The oil was recovered by heating on hot
plate at 50ºC for 30 min, centrifuged at 8000 rpm (4ºC) for 20 min and frozen prior to
scraping and collecting the crude rice bran oil. The residual meal was defatted rice bran,
which was dried overnight at 85±2ºC in hot air oven. The defatted rice bran was kept in low
temperature (-25ºC) until use. The rice bran and defatted rice bran samples were used to
analyze proximate components, bioactive compounds and antioxidant activity.
As. J. Food Ag-Ind. 2009, 2(04), 731-743 735
Determination of proximate compositions
The proximate composition analyses were determined by following the methods of AOAC
[18]. Reducing sugar was determined by the method reported by Miller [21].
Extraction of rice bran
Finely ground bran samples (5.0g) were extracted in 80% methanol (25 mL) by placing the
mixture in a sonicator for 10 minutes. The mixture was filtered and residue was subjected to
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
Thailand
Sebagai. J. Food Ag-Ind. 2009, 2 (04), 731-743 732
Pendahuluan
Organik pertanian adalah sistem manajemen produksi ekologi yang mempromosikan dan
meningkatkan keanekaragaman hayati, siklus biologi dan aktivitas biologi tanah. Hal ini didasarkan pada penggunaan minimal
input off-farm dan praktik manajemen yang memulihkan, mempertahankan dan meningkatkan ekologi
harmoni [1]. Pertanian organik ditandai dengan larangan mayoritas
bahan kimia sintetis di kedua tanaman dan ternak produksi [2]. Istilah "konvensional"
pertanian juga disebut sebagai sistem pertanian biasa yang secara luas diterapkan untuk setiap nonorganik
sistem pertanian dan bergantung pada input eksternal untuk mencapai hasil produksi yang tinggi [2].
The pertanian organik luas mulai dan secara keseluruhan berusaha untuk mempromosikan pengembangan dari
sistem produksi pangan yang secara sosial, ekologis, ekonomis dan berkelanjutan. Kunci
prinsip dan praktek produksi pangan organik bertujuan untuk mendorong dan meningkatkan biologis
siklus dalam sistem pertanian untuk mempertahankan dan meningkatkan kesuburan jangka panjang tanah, untuk
meminimalkan segala bentuk pencemaran, untuk menghindari penggunaan pupuk sintetis dan pestisida, untuk
mempertahankan keragaman genetik dari sistem produksi, untuk mempertimbangkan sosial dan lebih luas
dampak ekologis dari produksi pangan dan pengolahan sistem, dan untuk menghasilkan makanan tinggi
kualitas dalam jumlah yang cukup [3].
Konsumen menuntut produk organik karena mereka percaya mereka lebih beraroma dan
hormat terhadap lingkungan dan kesehatan manusia. Namun, ada masih memiliki beberapa
kontroversi keuntungan persepsi kualitas makanan organik tumbuh. Beberapa
studi dengan organik dan konvensional produksi makanan telah dilakukan termasuk
kentang, gandum, rye, dan sejumlah buah-buahan dan sayuran serta produk daging seperti yang ditunjukkan pada
Tabel 1 [3].
Barrett et al., [4] yang diteliti organik tumbuh tomat berfokus pada produksi komersial dari
pengolahan tomat, dengan bidang organik dan konvensional dibandingkan. Hasil penelitian menunjukkan
bahwa jus tomat dibuat dari organik pada beberapa peternakan secara signifikan lebih tinggi di larut
padatan (derajat Brix), lebih tinggi dalam konsistensi, dan keasaman titratable. Mitchell et al., [5] melaporkan
penelitian sepuluh tahun tentang pengaruh praktek pengelolaan tanaman organik dan konvensional
pada isi flavonoid dalam tomat. Perbandingan analisis sampel arsip dari
sistem produksi konvensional dan organik menunjukkan tingkat yang lebih tinggi secara statistik (P
<0,05) dari quercetin dan kaempferol aglikon dalam tomat organik. Perez-Lopez et al., [6]
menunjukkan efek dari pertanian konvensional, terpadu, dan organik pada warna, mineral, dan
karotenoid dari buah-buahan manis lada (Capsicum annuum), cv. Almuden. Eksperimental
hasil membuktikan bahwa pertanian organik disediakan paprika dengan intensitas tertinggi merah dan
warna kuning, isi mineral, jumlah karotenoid, dan akhirnya, paprika merah organik
dianggap sebagai mereka yang memiliki aktivitas tertinggi antioksidan dari semua paprika belajar (pertanian
pertanian dan pengembangan tahap).
As. J. Food Ag-Ind. 2009, 2 (04), 731-743 733
Tabel 1. Ringkasan studi yang membandingkan nilai gizi dan kualitas umum
makanan organik dan konvensional tumbuh sebagai dibeli dari pengecer.
Studi Produk diuji Studi Nutrisi desain
dianalisis
Key hasil
Anon Hijau kacang,
tomat,
capsicum, silverbeet
Sampel dari bersertifikat
pertanian organik dan
supermarket
Ca, K, mg,
Na, Fe, Zn,
Vitamin C,
karoten
Vitamin C dan karoten
tingkat yang sama di organik
memproduksi dan konvensional;
tingkat mineral lebih tinggi
di semua produk organik
Cooklin
dan
Thomson
Tomat ,
kentang, manis
merica, wortel,
selada, apel,
anggur
organik dan konvensional
sampel dari 5 gerai ritel
setiap minggu (18 periode minggu),
lebih dari 80% dari produk organik
berlabel bersertifikat
Terlihat
kualitas
karakteristik
(memar,
robek, serangga
kerusakan,
perubahan warna )
kualitas Terlihat dari organik
produk dan konvensional
adalah sering
tidak bisa dibedakan. Organik
wortel, daun selada, lada,
dan kentang memiliki lebih banyak
cacat.
Pither dan
Balai
Apel, wortel,
kubis hijau,
kentang,
tomat
Produk yang dibeli dari
berbagai pengecer, 30 sampel
masing-masing organik dan
konvensional
Moisture,
total padatan,
vitamin C,
gula, pati,
Fe, Zn, K
Hasil yang variabel,
apel: vitamin C yang lebih tinggi di
organik, Gula dan vitamin
C yang lebih tinggi di konvensional
wortel, kubis hijau,
kentang, tomat
Smith Apel, pir,
kentang, gandum,
jagung, bayi
makanan
Sampel dibeli lebih
dua tahun dari toko
Rentang
mineral
tingkat yang lebih tinggi dari beberapa
mineral dalam semua organik
produk kecuali makanan bayi.
Sumber: [3]
Baru-baru ini popularitas beras organik telah meningkat di banyak daerah di seluruh dunia bahkan
meskipun pasar beras organik masih relatif belum dewasa. Biaya penurunan produksi
per acre dan metode produksi yang ramah lingkungan telah menjadi menarik bagi beberapa
produsen. Namun efek dari praktek pertanian pada hasil produksi, bahan kimia
komposisi, komponen bioaktif dibandingkan dengan produksi konvensional telah masih
pertanyaan bagi kebanyakan produsen. Beras dikonsumsi secara keseluruhan kernel yang umumnya dihasilkan
oleh penggilingan dan meninggalkan bekatul sebagai oleh-produk. Hal ini sesuai dengan sekitar 10% dari
total gabah [7,8] dan potensi menghasilkan dedak padi di tingkat global adalah 27,3
juta ton [3]. Meskipun bekatul merupakan sumber protein, serat diet dan
senyawa fungsional seperti oryzanol dan vitamin E [7,9,10], dedak beras saat ini
kurang dimanfaatkan sebagai bahan makanan. Hal ini pada dasarnya digunakan untuk pakan ternak; hanya sebagian kecil yang
digunakan untuk konsumsi manusia dan terutama digunakan untuk produksi minyak dedak padi. Bekatul adalah
sumber berkualitas tinggi minyak sayur (dedak padi minyak, RBO), yang telah menarik banyak medis
perhatian karena sifat hipokolesterolemik yang kuat terutama disebabkan seimbang yang
komposisi asam lemak dan tingkat tinggi fitokimia antioksidan seperti oryzanols,
tokoferol dan tokotrienol [11,12]. Beras ekstraksi minyak dedak menghasilkan Deoiled atau yg dihilangkan lemak
makanan sebagai oleh-produk dalam jumlah besar per tahun. Bekatul lemaknya, produk sampingan dari beras
ekstraksi minyak dedak, merupakan sumber yang baik dari serat larut diet [13], protein, asam fitat,
inositol, dan vitamin B [14,15]. Tujuan utama dari penelitian ini adalah untuk menyelidiki
efek dari sistem yang tumbuh di komposisi kimia dan khasiat antioksidan dari dedak padi dan
bekatul lemaknya.
Sebagai. J. Food Ag-Ind. 2009, 2 (04), 731-743 734
Bahan dan Metode
Kimia
Standard α- tokoferol dibeli dari Sigma-Aldrich Chemical Co, (St. Louis, Mo,
​​USA). HPLC kelas metanol, asetonitril, heksana, etil asetat dan etanol yang dibeli
dari BHD (Poole, UK). standar γ- oryzanol dibeli dari Tsuno makanan industri Co,
Ltd (Wakayama, Jepang) asam Galia, 1, 1-difenil-2- pikrilhidrazil (DPPH), butylated
hydroxyanisole (BHA) dan butylated hydroxytoluene (BHT) diperoleh dari Fluka
Chemical (Buchs, Swiss). Semua bahan kimia dan reagen yang merupakan kelas analitis.
Sampel dedak
Sampel dedak padi diperoleh dari penggilingan beras kasar Oryza Stiva L. CV.
Khao Dawk Mali-105. Dedak beras organik (ORB) adalah dari beras kasar organik yang ditanam di
bersertifikat pertanian organik di provinsi Surin, Thailand. Dedak padi konvensional (CRB) adalah
dari beras kasar tumbuh di bawah praktek konvensional. Kedua jenis sampel dipanen pada
tahun 2008 tanaman. Beras kasar itu de-dikuliti dan digiling untuk menghasilkan dedak padi dengan tingkat
penggilingan 8%.
Persiapan beras dedak
beras dedak distabilkan menggunakan pemanas ohmik diterapkan dengan mengikuti metode yang dijelaskan
oleh [16,17] dengan beberapa modifikasi. Dedak (180g) ditambahkan dengan air deionisasi untuk
mencapai kadar air 30% basis basah dan kemudian ditempatkan di unit pemanas ohmic (lab
skala). Kekuatan medan listrik 150 V / cm pada frekuensi 50 Hz yang diterapkan untuk
mendapatkan suhu 105ºC di kemudian bekatul didinginkan sampai suhu kamar dan terus
di polietilen (zipper-top) di -25ºC sampai digunakan.
Beras minyak dedak ekstraksi dan dihilangkan lemaknya persiapan dedak padi
Bekatul ekstraksi minyak menggunakan heksana
Ekstraksi heksana dilakukan dengan menggunakan metode Soxhlet mengikuti metode
[18]. Dedak padi ditempatkan ke dalam bidal kerucut kertas menggunakan pelarut n-heksana dalam soxhlet
ekstraktor dan diekstraksi selama 2 jam. Minyak dipisahkan dan kemudian bekatul lemaknya tetap di
ruangan dikumpulkan dan dikeringkan dalam oven. Bekatul lemaknya suhu rendah (-25ºC) sampai
analisis.
Beras ekstraksi minyak dedak menggunakan enzim
Ekstraksi dilakukan menurut metode yang dilaporkan oleh [19] dengan beberapa modifikasi.
The bekatul ditambahkan dengan air suling (dedak padi rasio air 1 : 5 w / v), pH
disesuaikan menjadi 4,75 dengan 0,1 N HCL dan kemudian selulosa dan hemicellulase ditambahkan. The
campuran diinkubasi pada 37ºC selama 3 jam di gemetar mandi air pada 80 rpm [20]. Setelah itu,
pH diatur sampai 7,0 dengan 0,1 N NaOH, dan kemudian α-amilase dan protease yang ditambahkan ke dalam
bubur (40ºC) dengan gemetar selama 18 jam (semalam). Minyak itu pulih dengan pemanasan pada panas
piring di 50ºC selama 30 menit, disentrifugasi pada 8000 rpm (4ºC) selama 20 menit dan dibekukan sebelum
gesekan dan mengumpulkan minyak dedak padi mentah. Makanan sisa itu dihilangkan seluruh lemaknya dedak padi,
yang dikeringkan semalam pada 85 ± 2 º C dalam oven udara panas. Dedak padi lemaknya disimpan di rendah
suhu (-25ºC) sampai digunakan. Dedak padi dan defatted sampel dedak padi yang digunakan untuk
menganalisis komponen proksimat, senyawa bioaktif dan aktivitas antioksidan.
Sebagai. J. Food Ag-Ind. 2009, 2 (04), 731-743 735
Penentuan komposisi proksimat
Analisis komposisi proksimat ditentukan dengan mengikuti metode AOAC
[18]. Mengurangi gula ditentukan dengan metode yang dilaporkan oleh Miller [21].
Ekstraksi dedak padi
sampel dedak halus tanah (5.0g) diekstraksi di 80% metanol (25 ml) dengan menempatkan
campuran di sonikator selama 10 menit. Campuran disaring dan residu menjadi sasaran
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: