wellbeing suggest the use of thresholds as “one way to manage a large  translation - wellbeing suggest the use of thresholds as “one way to manage a large  Indonesian how to say

wellbeing suggest the use of thresh

wellbeing
suggest the use of thresholds as “one way to manage a large number of scale responses” (OECD,
2013, p. 187). Thresholds provide a useful way of conveying aspects of the data’s distribution
with a single figure, and are compatible with the SWI’s ordinal data. However, the OECD
guidelines also caution that great care must be taken when selecting thresholds: “there is
considerable risk that a threshold positioned in the wrong part of the scale could mask important
changes in the distribution of the data” (2013, p. 188). The OECD recommends examining data
distribution (particularly watching for the tendency for strong negative skew common to
subjective wellbeing responses), using median and mean statistics to help identify tipping points,
and selecting scale values above which empirical evidence suggests positive outcomes are
associated. The OECD also acknowledges that a key challenge lies in combining a data-driven
approach with the identification of thresholds that are meaningful and have real-world utility.
With this in mind, and considering the purpose of this study was to examine measurement
equivalence across four different operationalizations, we needed to find a methodology we could
apply consistently both within each definition, and across all four different operationalizations.
Concerned that Huppert and So’s approach of selecting thresholds based upon the distribution
of data made (potentially erroneous) assumptions about the prevalence of flourishing, and
influenced the reported prevalence rates substantially, we instead selected thresholds above
which empirical evidence suggests positive outcomes are associated. These were based on face
validity, and our theoretical knowledge of flourishing and subjective wellbeing. Essentially, we
asked, ‘What is the lowest score with which a participant could respond to this question and still
be deemed to be flourishing?’ For example, on the SWI question “Please indicate how much of
the time during the past week you felt calm and peaceful”, we deemed a score of two or above
to be characteristic of flourishing, so that participants responded that they felt calm and peaceful
at least ‘some of the time’. One of the key outcomes to come from conducting this review and
analysis is the way it highlighted the critical role that decisions regarding the location of
thresholds play in determining prevalence rates of population flourishing, and the challenges
involved in using a categorical approach to defining and measuring flourishing. But taking a
categorical approach is important: it is the appropriate method for calculating prevalence, and
mean scores give no indication of the number of people experiencing high wellbeing (Huppert
& So, 2013). Our methodology and rationale for establishing thresholds is detailed in the
measures section above (also see Appendix A).
Fourthly, a further limitation is that most components of flourishing were represented by a
single item in the SWI. While it would have been better to have more than one item representing
each symptom of wellbeing, reducing the size of error, population studies such as the SWI are
designed with considerations of participant overload and time burden in mind. Similarly, the
lack of objective measures represents a further limitation. As researchers we appreciate the value
of employing subjective and objective measures simultaneously, given the ability of each to
provide important insights for policy makers. After all, we want citizens to have “both decent
objective standards of living and feel subjectively satisfied with their lives” (Forgeard et al., 2011,
p. 99). However, the requirements of balancing questionnaire breadth and depth prevented the
inclusion of any data beyond self-report, and also precluded the measurement of other
potentially associated variables such as personality traits.

0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
wellbeing suggest the use of thresholds as “one way to manage a large number of scale responses” (OECD, 2013, p. 187). Thresholds provide a useful way of conveying aspects of the data’s distribution with a single figure, and are compatible with the SWI’s ordinal data. However, the OECD guidelines also caution that great care must be taken when selecting thresholds: “there is considerable risk that a threshold positioned in the wrong part of the scale could mask important changes in the distribution of the data” (2013, p. 188). The OECD recommends examining data distribution (particularly watching for the tendency for strong negative skew common to subjective wellbeing responses), using median and mean statistics to help identify tipping points, and selecting scale values above which empirical evidence suggests positive outcomes are associated. The OECD also acknowledges that a key challenge lies in combining a data-driven approach with the identification of thresholds that are meaningful and have real-world utility. With this in mind, and considering the purpose of this study was to examine measurement equivalence across four different operationalizations, we needed to find a methodology we could apply consistently both within each definition, and across all four different operationalizations. Concerned that Huppert and So’s approach of selecting thresholds based upon the distribution of data made (potentially erroneous) assumptions about the prevalence of flourishing, and influenced the reported prevalence rates substantially, we instead selected thresholds above which empirical evidence suggests positive outcomes are associated. These were based on face validity, and our theoretical knowledge of flourishing and subjective wellbeing. Essentially, we asked, ‘What is the lowest score with which a participant could respond to this question and still be deemed to be flourishing?’ For example, on the SWI question “Please indicate how much of the time during the past week you felt calm and peaceful”, we deemed a score of two or above to be characteristic of flourishing, so that participants responded that they felt calm and peaceful at least ‘some of the time’. One of the key outcomes to come from conducting this review and analysis is the way it highlighted the critical role that decisions regarding the location of thresholds play in determining prevalence rates of population flourishing, and the challenges involved in using a categorical approach to defining and measuring flourishing. But taking a categorical approach is important: it is the appropriate method for calculating prevalence, and mean scores give no indication of the number of people experiencing high wellbeing (Huppert & So, 2013). Our methodology and rationale for establishing thresholds is detailed in the measures section above (also see Appendix A). Fourthly, a further limitation is that most components of flourishing were represented by a single item in the SWI. While it would have been better to have more than one item representing each symptom of wellbeing, reducing the size of error, population studies such as the SWI are designed with considerations of participant overload and time burden in mind. Similarly, the lack of objective measures represents a further limitation. As researchers we appreciate the value of employing subjective and objective measures simultaneously, given the ability of each to provide important insights for policy makers. After all, we want citizens to have “both decent objective standards of living and feel subjectively satisfied with their lives” (Forgeard et al., 2011, p. 99). However, the requirements of balancing questionnaire breadth and depth prevented the inclusion of any data beyond self-report, and also precluded the measurement of other potentially associated variables such as personality traits.
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
kesejahteraan
menyarankan penggunaan ambang batas sebagai "salah satu cara untuk mengelola sejumlah besar tanggapan skala" (OECD,
2013, hal. 187). Ambang menyediakan cara yang berguna untuk menyampaikan aspek distribusi data ini
dengan tokoh tunggal, dan kompatibel dengan data ordinal yang SWI ini. Namun, OECD
pedoman juga mengingatkan bahwa perhatian besar harus diambil ketika memilih batas: "ada
risiko yang cukup bahwa ambang diposisikan di bagian yang salah dari skala bisa menutupi
penting. Perubahan dalam distribusi data" (2013, p 188 ). OECD merekomendasikan memeriksa data
distribusi (terutama mengawasi kecenderungan untuk kuat negatif condong umum untuk
subyektif tanggapan kesejahteraan), menggunakan median dan statistik rata-rata untuk membantu mengidentifikasi titik kritis,
dan nilai-nilai skala memilih atas yang bukti empiris menunjukkan hasil positif
terkait. OECD juga mengakui bahwa tantangan utama terletak pada menggabungkan data-driven
pendekatan dengan identifikasi ambang batas yang bermakna dan memiliki utilitas dunia nyata.
Dengan pemikiran ini, dan mengingat tujuan dari penelitian ini adalah untuk menguji pengukuran
kesetaraan di empat operationalizations berbeda, kita perlu menemukan metodologi kita bisa
menerapkan secara konsisten baik dalam setiap definisi, dan di semua empat operationalizations berbeda.
Khawatir bahwa pendekatan Huppert dan So memilih ambang batas berdasarkan distribusi
data dibuat (berpotensi salah) asumsi tentang prevalensi berkembang, dan
dipengaruhi tingkat prevalensi yang dilaporkan secara substansial, kita bukan karena batas atas
yang bukti empiris menunjukkan hasil positif terkait. Ini adalah berdasarkan wajah
validitas, dan pengetahuan teoritis kami berkembang dan kesejahteraan subjektif. Pada dasarnya, kami
bertanya, 'Apa nilai terendah dengan yang peserta bisa menanggapi pertanyaan ini dan masih
dianggap akan berkembang?' Sebagai contoh, pada pertanyaan SWI "Harap menunjukkan berapa banyak
waktu selama seminggu yang lalu Anda merasa tenang dan damai", kami dianggap skor dua atau lebih
menjadi karakteristik berkembang, sehingga peserta menjawab bahwa mereka merasa tenang dan damai
setidaknya 'beberapa waktu'. Salah satu hasil utama datang dari melakukan review ini dan
analisis adalah cara menyoroti peran penting bahwa keputusan mengenai lokasi
ambang bermain dalam menentukan tingkat prevalensi berkembang penduduk, dan tantangan
yang terlibat dalam menggunakan pendekatan kategoris untuk mendefinisikan dan mengukur berkembang. Tetapi mengambil
pendekatan kategoris penting: itu adalah metode yang tepat untuk menghitung prevalensi, dan
nilai rata-rata tidak memberikan indikasi jumlah orang yang mengalami kesejahteraan tinggi (Huppert
& Jadi, 2013). Metodologi dan pemikiran untuk mendirikan batas adalah rinci dalam
langkah-langkah di atas bagian (lihat juga Lampiran A).
Keempat, pembatasan lebih lanjut adalah bahwa sebagian besar komponen berkembang diwakili oleh
satu item dalam SWI. Sementara itu akan lebih baik untuk memiliki lebih dari satu item yang mewakili
setiap gejala kesejahteraan, mengurangi ukuran kesalahan, studi populasi seperti SWI yang
dirancang dengan pertimbangan kelebihan peserta dan waktu beban dalam pikiran. Demikian pula,
kurangnya ukuran objektif merupakan batasan lebih lanjut. Sebagai peneliti kita menghargai nilai
dari mempekerjakan tindakan subjektif dan objektif secara bersamaan, mengingat kemampuan masing-masing untuk
memberikan wawasan penting bagi para pembuat kebijakan. Setelah semua, kami ingin warga negara untuk memiliki "baik layak
standar tujuan hidup dan merasa subyektif puas dengan kehidupan mereka" (Forgeard et al., 2011,
p. 99). Namun, persyaratan menyeimbangkan kuesioner luas dan kedalaman mencegah
masuknya data melampaui laporan diri, dan juga menghalangi pengukuran lain
variabel yang berpotensi terkait seperti ciri-ciri kepribadian.

Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2024 I Love Translation. All reserved.

E-mail: