Moreover, the `setting’ or context of the task also in¯ uences perform translation - Moreover, the `setting’ or context of the task also in¯ uences perform Indonesian how to say

Moreover, the `setting’ or context

Moreover, the `setting’ or context of the task also in¯ uences performance, as it
does in the assessment of the application of concepts, since a school or laboratory
setting may signal that a particular kind of thinking is required whilst an everyday
domestic setting would not provide this prompt. Again, APU results provided
evidence of the in¯ uence of this aspect and of its unpredictability; in some cases an
everyday context produced an easier task and in others a more dif® cult one (DES,
1988).
However, the extent to which the context, rather than cognitive demand, dominates
the performance, as opposed to having a slightly modifying effect, is a matter
of contention. It relates to the more general issues surrounding the con¯ icting claims
made about the in¯ uence of context on learning, focusing on the notion of `situated
cognition’ . Those who embrace this notion take the view that the context of a
learning activity (not only its subject-matter but also the situation in which it is
encountered) is so important that `it completely over-rides any effect of either the
logical structure of the task or the particular general ability of individuals’ (Adey,
1997, p. 51). Evidence in support of this often cites examples such as the ability of
unschooled young street vendors to calculate accurately whilst the same young
people fail the arithmetic tasks if they are presented in the form of `sums’ at school.
Similar ® ndings have been reported for older people (Nunes et al., 1993) . Certainly
the effect of context on performance has been demonstrated in many studies,
notably by Watson & Johnson-Laird (1972). However Adey & Shayer (1994) and
Adey (1997) have given spirited responses to these studies, including the wellknown
one of Donaldson (1978), who challenged Piaget’ s ® nding by showing that
a change in context affected the dif® culty of a Piagetian spatial ability task. Adey
argues:
Clearly motivation and interest play a signi® cant role, and indeed if one
wants to get a true picture of the maximum cognitive capability of a child
it is essential that the task be made as relevant as possible, and that all of
the essential pieces of concrete information are meaningful. But the determined
efforts of the situated cognition adherents have failed so far to show
that all conceptual dif® culties can be accounted for simply by changing the
context. (Adey, 1997, p. 59)
To extend Adey’ s argument, it may be that the variation associated with content or
situation results from students’ failure to engage with the cognitive demand. There
is certainly evidence for this from talking with students about their perceptions of
test items (e.g. Fensham, 1998; Fensham & Haslam, 1998). If the main problem is
engagement, then the more this can be assured by providing tasks perceived as
interesting and important to students, the less should be the variation associated
with what the particular situations are. This is a challenge to `authentic’ assessment,
which aims to provide assessment tasks that are `more practical, realistic and
challenging’ (Torrance, 1995) than conventional tests.
However, the impact of conceptual understanding required when process skills
are used in relation to scienti® c content remains. Clearly, it is not valid to assess
process skills in tasks which require conceptual understanding not available to the
Downloaded by [University of Auckland Library] at 11:25 07 December 2014
Assessing Science Process Skills 133
student (as in the case of osmotic pressure and the primary student). It is important
to assess process skills only in relation to content where the conceptual understanding
will not be an obstacle to using process skills. This can never be certain,
however, and the approaches to dealing with this problem effectively depend on
whether the purpose of the assessment is formative or summative in relation to the
individual or for monitoring standards at regional or national levels. These purposes
will now be considered in turn.



Formative Assessment of Process Skills
Assessment is formative when information, gathered by teachers and by students
assessing their own work, is used to adapt teaching and learning activities to meet
the identi® ed needs (Black & Wiliam, 1998a) . Assessment which has a formative
purpose is essentially in the hands of teachers and students and so, theoretically, can
be part of every activity in which science process skills are used. Information can be
gathered by:
• observing pupilsÐ -this includes listening to how they describe their work and
their reasoning;
• questioning, using open questions, phrased to invite pupils to explore their ideas
and reasoning;
• setting tasks in a way which requires pupils to use certain skills; and
• asking pupils to communicate their thinking through drawings, artefacts, actions,
role play and concept mapping, as well as writing.
These methods give plenty of opportunity for the teacher to ® nd out the extent to
which conceptual understanding is an obstacle to effective use of the process skills,
or vice versa. Moreover, since the information is gathered in situations set up for
students’ learning, it is reasonable to expect the conceptual demand to be within the
reach of the students; the teacher will certainly know if this is not the case. There
is also the opportunity to gather information in a range of learning tasks and so build
up a picture of development across these tasks. Hein (1991) and Hein & Price
(1994) have pointed to a range of ideas for assessment, whilst stressing the importance
of using a variety of approaches.
Teachers may, of course, collect information in the ways just suggested but yet not
use it formatively. It is in the use of the information gathered that formative
assessment is distinguished from assessment for other purposes. Use by the teacher
involves decisions and action: decisions about the next steps in learning and action
in helping pupils take these steps. But it is important to remember that it is the
pupils who will take the next steps, and the more they are involved in the process,
the greater will be their understanding of how to extend their learning.
To identify the focus for further learning, teachers need to have an understanding
of development in process skills which they can both use themselves and share with
their students. An example of how this development has been outlined for pupils
aged 5± 12 in a way which also suggests the next steps has been given by Harlen &
Jelly (1997) . For each process skill (observing, explaining, predicting, raising ques-
Downloaded by [University of Auckland Library] at 11:25 07 December 2014
134 W. Harlen
tions, planning and communicating) they suggest a list of questions re¯ ecting as far
as possible successive points in development. For example, for `interpreting’ , the
questions are:
Do the children
• discuss what they ® nd in relation to their initial questions?
• compare their ® ndings with their earlier predictions?
• notice associations between changes in one variable and another?
• identify patterns or trends in their results?
• check any patterns or trends against all the evidence?
• draw conclusions which summarise and are consistent with the evidence? and
• recognise that any conclusions may have to be changed in the light of
new evidence? (Harlen & Jelly, 1997, p. 57)
Each list is intended to be used by the teacher to focus his or her attention on
signi® cant aspects of the students’ actions. Re¯ ecting after the event on the evidence
gathered, the teacher can ® nd where answers change from `yes’ to `no’ and so
identify the region of development. Information used in this process does not only
come from observing students; it can be provided by using all the methods listed
above. Discussion with students of their methods of enquiry is particularly helpful.
Written work is also a source of information if this is set so as to require re¯ ection
on methods. Peer review and groups reporting to each other enable teachers to hear
students articulating their thinking.
Since assessment is not formative unless it is used to help learning, teachers and
students have to be aware of ways in which this can be done. In the case of science
process skills, the main strategies that teachers can use to help learning are:
• to provide an opportunity for using process skills; although obvious that this is
necessary it is often not provided because students are given work cards or work
books to follow and they do not have to think about what evidence is required and
how best to gather it (justi® ed because it enables students to cover the syllabus
more quickly and is less demanding on the teacher);
• to encourage critical review by students of how their activities were carried out
and discussion of how, if they were to repeat the activity, they could improve, for
example, the design of the investigation, how evidence was gathered and how they
used it to answer their initial question;
• to give feedback in a form that focuses on the quality of the work, not on the
person (Black & Wiliam, 1998b) ;
• to give students access to examples of work which meet the criteria of quality and
to point out the aspects which are signi® cant in this (Wiliam, 1998) ;
• to engage in metacognitive discussion about procedures so that students see the
relevance to other investigations of what they have learned about the way in which
they conducted a particular investigation (Baird, 1998); and
• to teach the techniques and the language needed as skills advance (Roth, 1998) .
The ways in which students can use this information are to engage in self-critical
Downloaded by [University of Auckland Library] at 11:25 07 December 2014
Assessing Science Process Skills 135
review of their work, take opportunities to compare it with examples of work of a
higher quality and work to improve speci® c aspects. They should be helped to
identify for themselves the steps they need to tak
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
Moreover, the `setting’ or context of the task also in¯ uences performance, as itdoes in the assessment of the application of concepts, since a school or laboratorysetting may signal that a particular kind of thinking is required whilst an everydaydomestic setting would not provide this prompt. Again, APU results providedevidence of the in¯ uence of this aspect and of its unpredictability; in some cases aneveryday context produced an easier task and in others a more dif® cult one (DES,1988).However, the extent to which the context, rather than cognitive demand, dominatesthe performance, as opposed to having a slightly modifying effect, is a matterof contention. It relates to the more general issues surrounding the con¯ icting claimsmade about the in¯ uence of context on learning, focusing on the notion of `situatedcognition’ . Those who embrace this notion take the view that the context of alearning activity (not only its subject-matter but also the situation in which it isencountered) is so important that `it completely over-rides any effect of either thelogical structure of the task or the particular general ability of individuals’ (Adey,1997, p. 51). Evidence in support of this often cites examples such as the ability ofunschooled young street vendors to calculate accurately whilst the same youngpeople fail the arithmetic tasks if they are presented in the form of `sums’ at school.Similar ® ndings have been reported for older people (Nunes et al., 1993) . Certainlythe effect of context on performance has been demonstrated in many studies,notably by Watson & Johnson-Laird (1972). However Adey & Shayer (1994) andAdey (1997) have given spirited responses to these studies, including the wellknownone of Donaldson (1978), who challenged Piaget’ s ® nding by showing thata change in context affected the dif® culty of a Piagetian spatial ability task. Adeyargues:Clearly motivation and interest play a signi® cant role, and indeed if onewants to get a true picture of the maximum cognitive capability of a childit is essential that the task be made as relevant as possible, and that all ofthe essential pieces of concrete information are meaningful. But the determinedefforts of the situated cognition adherents have failed so far to showthat all conceptual dif® culties can be accounted for simply by changing thecontext. (Adey, 1997, p. 59)To extend Adey’ s argument, it may be that the variation associated with content orsituation results from students’ failure to engage with the cognitive demand. Thereis certainly evidence for this from talking with students about their perceptions oftest items (e.g. Fensham, 1998; Fensham & Haslam, 1998). If the main problem isengagement, then the more this can be assured by providing tasks perceived asinteresting and important to students, the less should be the variation associatedwith what the particular situations are. This is a challenge to `authentic’ assessment,which aims to provide assessment tasks that are `more practical, realistic andchallenging’ (Torrance, 1995) than conventional tests.However, the impact of conceptual understanding required when process skillsare used in relation to scienti® c content remains. Clearly, it is not valid to assessprocess skills in tasks which require conceptual understanding not available to theDownloaded by [University of Auckland Library] at 11:25 07 December 2014Assessing Science Process Skills 133student (as in the case of osmotic pressure and the primary student). It is importantto assess process skills only in relation to content where the conceptual understandingwill not be an obstacle to using process skills. This can never be certain,however, and the approaches to dealing with this problem effectively depend onwhether the purpose of the assessment is formative or summative in relation to theindividual or for monitoring standards at regional or national levels. These purposeswill now be considered in turn.Formative Assessment of Process SkillsAssessment is formative when information, gathered by teachers and by studentsassessing their own work, is used to adapt teaching and learning activities to meetthe identi® ed needs (Black & Wiliam, 1998a) . Assessment which has a formativepurpose is essentially in the hands of teachers and students and so, theoretically, canbe part of every activity in which science process skills are used. Information can begathered by:• observing pupilsÐ -this includes listening to how they describe their work andtheir reasoning;• questioning, using open questions, phrased to invite pupils to explore their ideasand reasoning;• setting tasks in a way which requires pupils to use certain skills; and• asking pupils to communicate their thinking through drawings, artefacts, actions,role play and concept mapping, as well as writing.These methods give plenty of opportunity for the teacher to ® nd out the extent towhich conceptual understanding is an obstacle to effective use of the process skills,or vice versa. Moreover, since the information is gathered in situations set up forstudents’ learning, it is reasonable to expect the conceptual demand to be within thereach of the students; the teacher will certainly know if this is not the case. Thereis also the opportunity to gather information in a range of learning tasks and so buildup a picture of development across these tasks. Hein (1991) and Hein & Price(1994) have pointed to a range of ideas for assessment, whilst stressing the importanceof using a variety of approaches.Teachers may, of course, collect information in the ways just suggested but yet notuse it formatively. It is in the use of the information gathered that formativeassessment is distinguished from assessment for other purposes. Use by the teacherinvolves decisions and action: decisions about the next steps in learning and actionin helping pupils take these steps. But it is important to remember that it is thepupils who will take the next steps, and the more they are involved in the process,the greater will be their understanding of how to extend their learning.To identify the focus for further learning, teachers need to have an understandingof development in process skills which they can both use themselves and share withtheir students. An example of how this development has been outlined for pupilsaged 5± 12 in a way which also suggests the next steps has been given by Harlen &Jelly (1997) . For each process skill (observing, explaining, predicting, raising ques-Downloaded by [University of Auckland Library] at 11:25 07 December 2014134 W. Harlentions, planning and communicating) they suggest a list of questions re¯ ecting as faras possible successive points in development. For example, for `interpreting’ , thequestions are:Do the children• discuss what they ® nd in relation to their initial questions?• compare their ® ndings with their earlier predictions?• notice associations between changes in one variable and another?• identify patterns or trends in their results?• check any patterns or trends against all the evidence?• draw conclusions which summarise and are consistent with the evidence? and• recognise that any conclusions may have to be changed in the light ofnew evidence? (Harlen & Jelly, 1997, p. 57)Each list is intended to be used by the teacher to focus his or her attention onsigni® cant aspects of the students’ actions. Re¯ ecting after the event on the evidencegathered, the teacher can ® nd where answers change from `yes’ to `no’ and soidentify the region of development. Information used in this process does not onlycome from observing students; it can be provided by using all the methods listedabove. Discussion with students of their methods of enquiry is particularly helpful.Written work is also a source of information if this is set so as to require re¯ ectionon methods. Peer review and groups reporting to each other enable teachers to hearstudents articulating their thinking.Since assessment is not formative unless it is used to help learning, teachers andstudents have to be aware of ways in which this can be done. In the case of scienceprocess skills, the main strategies that teachers can use to help learning are:• to provide an opportunity for using process skills; although obvious that this isnecessary it is often not provided because students are given work cards or workbooks to follow and they do not have to think about what evidence is required andhow best to gather it (justi® ed because it enables students to cover the syllabusmore quickly and is less demanding on the teacher);• to encourage critical review by students of how their activities were carried outand discussion of how, if they were to repeat the activity, they could improve, forexample, the design of the investigation, how evidence was gathered and how theyused it to answer their initial question;• to give feedback in a form that focuses on the quality of the work, not on theperson (Black & Wiliam, 1998b) ;• to give students access to examples of work which meet the criteria of quality andto point out the aspects which are signi® cant in this (Wiliam, 1998) ;• to engage in metacognitive discussion about procedures so that students see therelevance to other investigations of what they have learned about the way in whichthey conducted a particular investigation (Baird, 1998); and• to teach the techniques and the language needed as skills advance (Roth, 1998) .The ways in which students can use this information are to engage in self-criticalDownloaded by [University of Auckland Library] at 11:25 07 December 2014Assessing Science Process Skills 135review of their work, take opportunities to compare it with examples of work of ahigher quality and work to improve speci® c aspects. They should be helped toidentify for themselves the steps they need to tak
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
Selain itu, `pengaturan 'atau konteks tugas juga dalam kinerja uences, seperti
halnya dalam penilaian penerapan konsep, karena sekolah atau laboratorium
pengaturan mungkin sinyal bahwa jenis tertentu dari pemikiran diperlukan sementara sebuah sehari-hari
pengaturan domestik tidak akan memberikan prompt ini. Sekali lagi, hasil APU disediakan
bukti pengaruh dalam aspek ini dan ketidakpastian tersebut; dalam beberapa kasus sebuah
konteks sehari-hari yang dihasilkan tugas yang lebih mudah dan orang lain kultus satu lagi dif® (DES,
1988).
Namun, sejauh mana konteks, bukan permintaan kognitif, mendominasi
kinerja, sebagai lawan untuk memiliki sedikit memodifikasi efek, adalah masalah
pertentangan. Hal ini terkait dengan isu-isu yang lebih umum seputar con saling bertentangan klaim
dibuat tentang pengaruh di konteks pembelajaran, berfokus pada gagasan `terletak
kognisi '. Mereka yang memeluk gagasan ini mengambil pandangan bahwa konteks
kegiatan belajar (tidak hanya yang subjek-materi tetapi juga situasi di mana ia
temui) adalah sangat penting bahwa `sepenuhnya over-naik efek dari baik
struktur logis dari tugas atau kemampuan umum tertentu individu (Adey,
1997, hal. 51). Bukti yang mendukung ini sering mengutip contoh seperti kemampuan
unschooled PKL muda untuk menghitung secara akurat sementara muda sama
orang gagal tugas aritmatika jika mereka disajikan dalam bentuk `jumlah 'di sekolah.
Mirip ® temuan telah dilaporkan untuk orang tua (Nunes et al., 1993). Tentu
pengaruh konteks pada kinerja telah dibuktikan dalam banyak penelitian,
terutama oleh Watson & Johnson-Laird (1972). Namun Adey & Shayer (1994) dan
Adey (1997) telah memberikan tanggapan yang bersemangat untuk studi ini, termasuk wellknown
salah Donaldson (1978), yang menantang Piaget 's ® nding dengan menunjukkan bahwa
perubahan dalam konteks terpengaruh oleh kesulitan dif® dari tugas kemampuan spasial Piaget. Adey
berpendapat:
Jelas motivasi dan minat memainkan peran signi® tidak bisa, dan memang jika salah satu
ingin mendapatkan gambaran yang benar dari kemampuan kognitif maksimal anak
adalah penting bahwa tugas dibuat serelevan mungkin, dan bahwa semua
yang bagian penting dari informasi konkret yang bermakna. Tetapi bertekad
upaya penganut kognisi terletak telah gagal sejauh ini untuk menunjukkan
bahwa semua kesulitan-dif® konseptual dapat dipertanggungjawabkan hanya dengan mengubah
konteks. (Adey, 1997, hal. 59)
Untuk memperluas 'argumen s, mungkin bahwa variasi terkait dengan konten atau Adey
situasi hasil dari siswa gagal untuk terlibat dengan permintaan kognitif. Ada
tentu bukti ini dari berbicara dengan siswa tentang persepsi mereka tentang
item tes (misalnya Fensham, 1998; Fensham & Haslam, 1998). Jika masalah utama adalah
keterlibatan, maka lebih ini dapat yakin dengan memberikan tugas dianggap
menarik dan penting untuk siswa, yang kurang harus variasi terkait
dengan apa situasi tertentu yang. Ini adalah tantangan untuk `otentik 'penilaian,
yang bertujuan untuk memberikan tugas-tugas penilaian yang` lebih praktis, realistis dan
menantang' (Torrance, 1995) dari tes konvensional.
Namun, dampak dari pemahaman konseptual diperlukan bila keterampilan proses
digunakan dalam kaitannya untuk scienti® c tetap konten. Jelas, hal ini tidak berlaku untuk menilai
keterampilan proses dalam tugas-tugas yang membutuhkan pemahaman konseptual tidak tersedia untuk
diunduh oleh [University of Auckland Library] di 11:25 7 Desember 2014
Menilai Proses Sains Keterampilan 133
siswa (seperti dalam kasus tekanan osmotik dan siswa primer). Hal ini penting
untuk menilai keterampilan proses hanya dalam kaitannya dengan konten mana pemahaman konseptual
tidak akan menjadi halangan untuk menggunakan keterampilan proses. Ini tidak pernah bisa yakin,
bagaimanapun, dan pendekatan untuk menangani masalah ini secara efektif tergantung pada
apakah tujuan penilaian adalah formatif atau sumatif dalam kaitannya dengan
individu atau untuk memantau standar di tingkat regional atau nasional. Tujuan ini
sekarang akan dipertimbangkan pada gilirannya. Penilaian Formatif Proses Keterampilan Penilaian adalah formatif ketika informasi, yang dikumpulkan oleh guru dan siswa menilai pekerjaan mereka sendiri, digunakan untuk beradaptasi kegiatan belajar mengajar untuk memenuhi kebutuhan identi® ed (Black & Wiliam , 1998a). Penilaian yang memiliki formatif tujuan dasarnya di tangan guru dan siswa dan sebagainya, secara teoritis, dapat menjadi bagian dari setiap kegiatan yang keterampilan proses sains digunakan. Informasi dapat dikumpulkan oleh: • mengamati pupilsÐ -ini termasuk mendengarkan bagaimana mereka menggambarkan pekerjaan mereka dan penalaran mereka; • pertanyaan, menggunakan pertanyaan terbuka, diutarakan mengajak murid untuk mengeksplorasi ide-ide mereka dan penalaran; • pengaturan tugas dengan cara yang membutuhkan murid untuk menggunakan keterampilan tertentu; dan • meminta murid untuk berkomunikasi pemikiran mereka melalui gambar, artefak, tindakan, bermain peran dan pemetaan konsep, serta menulis. Metode ini memberikan banyak kesempatan bagi guru untuk ® nd keluar sejauh mana pemahaman konseptual merupakan hambatan untuk efektif menggunakan keterampilan proses, atau sebaliknya. Selain itu, karena informasi yang dikumpulkan dalam situasi diatur untuk pembelajaran siswa, adalah wajar untuk mengharapkan permintaan konseptual berada dalam jangkauan para siswa; guru pasti akan tahu jika hal ini tidak terjadi. Ada juga kesempatan untuk mengumpulkan informasi dalam berbagai tugas belajar dan membangun sebuah gambaran pembangunan di seluruh tugas-tugas ini. Hein (1991) dan Hein & Harga (1994) telah menunjuk berbagai ide untuk penilaian, sementara menekankan pentingnya menggunakan berbagai pendekatan. Guru mungkin, tentu saja, mengumpulkan informasi dengan cara hanya disarankan tetapi belum tidak menggunakannya formatif. Hal ini dalam penggunaan informasi yang dikumpulkan yang formatif penilaian dibedakan dari penilaian untuk tujuan lain. Digunakan oleh guru melibatkan keputusan dan tindakan: keputusan tentang langkah-langkah selanjutnya dalam belajar dan tindakan dalam membantu siswa mengambil langkah ini. Tetapi penting untuk diingat bahwa itu adalah murid yang akan mengambil langkah selanjutnya, dan semakin mereka terlibat dalam proses, semakin besar akan pemahaman mereka tentang bagaimana untuk memperpanjang belajar mereka. Untuk mengidentifikasi fokus untuk belajar lebih lanjut, guru perlu memiliki pemahaman pembangunan di keterampilan proses yang mereka dapat baik menggunakan diri mereka sendiri dan berbagi dengan siswa mereka. Contoh bagaimana pembangunan ini telah digariskan untuk murid berusia 5 ± 12 dengan cara yang juga menunjukkan langkah-langkah selanjutnya telah diberikan oleh Harlen & Jelly (1997). Untuk setiap keterampilan proses (mengamati, menjelaskan, memprediksi, peningkatan-pertanyaan yang di-download oleh [University of Auckland Library] di 11:25 7 Desember 2014 134 W. Harlen tions, perencanaan dan berkomunikasi) mereka menyarankan daftar pertanyaan Re ecting sejauh mungkin poin berturut-turut dalam pembangunan. Misalnya, untuk `menafsirkan ', yang pertanyaan adalah: Apakah anak-anak • mendiskusikan apa yang mereka ® nd dalam kaitannya dengan pertanyaan awal mereka? • membandingkan ® temuan mereka dengan prediksi mereka sebelumnya? • asosiasi pemberitahuan antara perubahan dalam satu variabel dan lain? • mengidentifikasi pola atau tren dalam hasil mereka? • memeriksa setiap pola atau tren terhadap semua bukti? • menarik kesimpulan yang merangkum dan konsisten dengan bukti? dan • mengakui bahwa kesimpulan mungkin harus diubah dalam terang bukti baru? (Harlen & Jelly, 1997, hal. 57) Setiap daftar dimaksudkan untuk digunakan oleh guru untuk fokus nya perhatian pada signi® aspek tidak bisa dari tindakan siswa. RE ecting setelah acara pada bukti yang dikumpulkan, guru dapat ® nd mana jawaban berubah dari `ya 'untuk` tidak' dan mengidentifikasi wilayah pembangunan. Informasi yang digunakan dalam proses ini tidak hanya datang dari mengamati siswa; itu dapat diberikan dengan menggunakan semua metode yang tercantum di atas. Diskusi dengan siswa dari metode mereka penyelidikan sangat bermanfaat. Pekerjaan tertulis juga merupakan sumber informasi jika ini diatur sehingga membutuhkan ection kembali pada metode. Peer review dan kelompok melaporkan satu sama lain memungkinkan guru untuk mendengar siswa mengartikulasikan pemikiran mereka. Karena penilaian tidak formatif kecuali digunakan untuk membantu pembelajaran, guru dan siswa harus menyadari cara di mana ini dapat dilakukan. Dalam hal ilmu keterampilan proses, strategi utama yang dapat digunakan oleh guru untuk membantu belajar adalah: • untuk memberikan kesempatan bagi menggunakan keterampilan proses; meskipun jelas bahwa ini adalah diperlukan sering tidak diberikan karena siswa diberi kartu kerja atau bekerja buku untuk mengikuti dan mereka tidak harus berpikir tentang apa bukti yang diperlukan dan bagaimana cara terbaik untuk mengumpulkan itu (justi® ed karena memungkinkan siswa untuk menutupi silabus lebih cepat dan kurang menuntut pada guru); • untuk mendorong tinjauan kritis oleh siswa tentang bagaimana kegiatan mereka dilakukan dan diskusi tentang bagaimana, jika mereka mengulangi aktivitas, mereka bisa meningkatkan, untuk contoh, desain penyelidikan, bagaimana bukti yang dikumpulkan dan bagaimana mereka menggunakannya untuk menjawab pertanyaan awal mereka; • memberikan umpan balik dalam bentuk yang berfokus pada kualitas pekerjaan, tidak pada orang (Black & Wiliam, 1998b); • untuk memberikan siswa akses ke contoh pekerjaan yang memenuhi kriteria kualitas dan untuk menunjukkan aspek-aspek yang tidak bisa di signi® ini (Wiliam, 1998); • untuk terlibat dalam diskusi metakognitif tentang prosedur sehingga siswa melihat relevansi dengan penyelidikan lain dari apa yang mereka telah belajar tentang cara di mana mereka melakukan investigasi khusus (Baird, 1998); dan • untuk mengajar teknik dan bahasa yang diperlukan keterampilan muka (Roth, 1998). Cara-cara di mana siswa dapat menggunakan informasi ini untuk terlibat dalam kritik diri yang diunduh oleh [University of Auckland Library] di 11:25 7 Desember 2014 Menilai Proses Sains Keterampilan 135 ulasan dari pekerjaan mereka, mengambil kesempatan untuk membandingkannya dengan contoh pekerjaan dari kualitas yang lebih tinggi dan bekerja untuk meningkatkan aspek c speci®. Mereka harus dibantu untuk mengidentifikasi untuk diri mereka sendiri langkah-langkah yang mereka butuhkan untuk tak






















































































Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2024 I Love Translation. All reserved.

E-mail: