ROLE OF LATENT AND LYTIC CYCLES IN ONCOGENESISIt had been taken for gr translation - ROLE OF LATENT AND LYTIC CYCLES IN ONCOGENESISIt had been taken for gr Russian how to say

ROLE OF LATENT AND LYTIC CYCLES IN

ROLE OF LATENT AND LYTIC CYCLES IN ONCOGENESIS
It had been taken for granted that EBV-induced cancers are caused only by latent infection with the virus and that the lytic cycle makes no contribution to oncogenesis. We also assume that latency is a crucial state for induction of cancer because most EBV-positive cancer cells are latently infected, and even more telling, initiation of the lytic cycle causes cell cycle arrest.

Nevertheless, recent studies that used lytic replication-incompetent EBV have shown that the lytic cycle of EBV increases B cell transformation efficiency, at least in cultured cells [6, 96] and a humanized mouse model [97]. Among these studies, Katsumura et al. have shown that, particularly in the presence of immune activity, lytic infection contributes to transformation by a paracrine mechanism [96]. In this article, they suggested involvement of IL-13; however, we assume that other viral/cellular cytokines/growth factors that are efficiently secreted during lytic replication may also contribute to oncogenesis. For example, functional IL-10 encoded by the virus, and cellular cytokines and growth factors such as IL-10, IL-8, TGF-β and vascular endothelial growth factor, are released from cells undergoing lytic replication and promote cell cycling of neighboring cells in which EBV is latently infected [98-101]. Cellular and viral IL-10 can both suppress T cells, whereas they promote growth of B cells. A lytic EBV gene, BARF1, encodes a soluble decoy receptor for macrophage colony stimulating factor, contributing to immune evasion in the microenvironment of EBV-positive cancers [102].

In addition to the involvement of immunity, when silencing or “re-silencing” takes place (Fig. 1) the silenced cells may acquire a growth advantage because genomic instability may be increased in lytic cells as a consequence of the lytic cycle of the virus enhancing activation of recombination or repair systems [17, 103, 104]. For example, the lytic switch BZLF1 degrades p53 [105], which possibly also contributes to oncogenesis. It has also been reported that some lytic genes, such as BGLF4 protein kinase [106, 107] or BGLF5 nuclease [108], somehow destabilize the host genome. Taking these pieces of evidence into consideration, we are proposing a “Hit and Hide” theory as a possible mechanism for the development and maintenance of EBV-positive cancers [8, 39]. Unlike the “Hit and Run” model, EBV does not run away but rather remains in the cell, maintaining silence and evading the immune system. By going back and forth between latent and lytic cycles, EBV-positive cells may efficiently accumulate mutations. Because the cell cycle is arrested in cells with lytic EBV, the virus has to be re-silenced to latency in order to promote cell division and also to hide from immune surveillance by restricting viral gene expression. By not running away and staying hidden in cells, EBV can still express oncogenes, and may thereby contribute to the development and maintenance of cancers. A recent report has shown that even when the lytic cycle has not been completely silenced, cells can still grow rapidly when the lytic process is abortive [109].
0/5000
From: -
To: -
Results (Russian) 1: [Copy]
Copied!
ROLE OF LATENT AND LYTIC CYCLES IN ONCOGENESISIt had been taken for granted that EBV-induced cancers are caused only by latent infection with the virus and that the lytic cycle makes no contribution to oncogenesis. We also assume that latency is a crucial state for induction of cancer because most EBV-positive cancer cells are latently infected, and even more telling, initiation of the lytic cycle causes cell cycle arrest.Nevertheless, recent studies that used lytic replication-incompetent EBV have shown that the lytic cycle of EBV increases B cell transformation efficiency, at least in cultured cells [6, 96] and a humanized mouse model [97]. Among these studies, Katsumura et al. have shown that, particularly in the presence of immune activity, lytic infection contributes to transformation by a paracrine mechanism [96]. In this article, they suggested involvement of IL-13; however, we assume that other viral/cellular cytokines/growth factors that are efficiently secreted during lytic replication may also contribute to oncogenesis. For example, functional IL-10 encoded by the virus, and cellular cytokines and growth factors such as IL-10, IL-8, TGF-β and vascular endothelial growth factor, are released from cells undergoing lytic replication and promote cell cycling of neighboring cells in which EBV is latently infected [98-101]. Cellular and viral IL-10 can both suppress T cells, whereas they promote growth of B cells. A lytic EBV gene, BARF1, encodes a soluble decoy receptor for macrophage colony stimulating factor, contributing to immune evasion in the microenvironment of EBV-positive cancers [102].In addition to the involvement of immunity, when silencing or “re-silencing” takes place (Fig. 1) the silenced cells may acquire a growth advantage because genomic instability may be increased in lytic cells as a consequence of the lytic cycle of the virus enhancing activation of recombination or repair systems [17, 103, 104]. For example, the lytic switch BZLF1 degrades p53 [105], which possibly also contributes to oncogenesis. It has also been reported that some lytic genes, such as BGLF4 protein kinase [106, 107] or BGLF5 nuclease [108], somehow destabilize the host genome. Taking these pieces of evidence into consideration, we are proposing a “Hit and Hide” theory as a possible mechanism for the development and maintenance of EBV-positive cancers [8, 39]. Unlike the “Hit and Run” model, EBV does not run away but rather remains in the cell, maintaining silence and evading the immune system. By going back and forth between latent and lytic cycles, EBV-positive cells may efficiently accumulate mutations. Because the cell cycle is arrested in cells with lytic EBV, the virus has to be re-silenced to latency in order to promote cell division and also to hide from immune surveillance by restricting viral gene expression. By not running away and staying hidden in cells, EBV can still express oncogenes, and may thereby contribute to the development and maintenance of cancers. A recent report has shown that even when the lytic cycle has not been completely silenced, cells can still grow rapidly when the lytic process is abortive [109].
Being translated, please wait..
Results (Russian) 2:[Copy]
Copied!
РОЛЬ скрытых и литических циклов в онкогенеза
это было само собой разумеющимся, что EBV раковые заболевания, вызванные обусловлены только латентной инфекции с вирусом и что цикл литического не дает вклада в онкогенеза. Предположим также, что задержка является решающим состояние для индукции рака, потому что большинство EBV-положительные раковые клетки латентно инфицированных, и даже более убедительным, инициирование цикла литического вызывает клеточного цикла. Тем не менее, недавние исследования, которые использовали литическую репликации некомпетентных EBV показали, что литический цикл EBV увеличивает эффективность трансформации в-клеток, по крайней мере, в культивируемых клетках [6, 96] и гуманизированного мышиной модели [97]. Среди этих исследований, Katsumura др. показали, что, в частности, в присутствии иммунной активности, литической инфекции способствует преобразованию с помощью паракринной механизма [96]. В этой статье, они предложили участие IL-13; Однако, мы предполагаем, что другие вирусные / клеточных факторов цитокины / роста, которые эффективно секретируемые во время репликации литического может также способствовать онкогенеза. Например, функциональный IL-10, кодируемый вирусом, и клеточные цитокины и факторы роста, такие как IL-10, IL-8, TGF-β и фактор роста эндотелия сосудов, освобождаются от клеток, подвергающихся литическую репликацию и способствовать клеточной циклирование соседних клетки, в которых ВЭБ латентно инфицированных [98-101]. Клеточные и вирусные IL-10 может одновременно подавить Т-клеток, в то время как они способствуют росту В-клеток. Ген литического EBV, BARF1, кодирует растворимый рецептор приманка для колониестимулирующий фактор макрофагов, способствуя иммунной уклонения в микросреде EBV-позитивных раковых [102]. В дополнение к вовлечению иммунитета, когда глушителей или "повторное молчание" происходит (рис. 1) с глушителем клетки могут приобретать преимущество роста, поскольку нестабильность генома может быть увеличена в литических клеток вследствие литического цикла вируса усиливающего активацию рекомбинации или ремонтных систем [17, 103, 104]. Например, литическую переключатель BZLF1 деградирует p53 [105], который, возможно, также вносит свой ​​вклад в онкогенеза. Было также сообщено, что некоторые литические гены, такие как BGLF4 протеинкиназы [106, 107] или BGLF5 нуклеазы [108], или иначе дестабилизировать геном хозяина. Исходя из этих кусков доказательств во внимание, мы предлагаем теорию "Hit и скрыть" в качестве возможного механизма для развития и поддержания EBV-позитивных раковых [8, 39]. В отличие от модели "Хит и запустить", ВЭБ не убегает, а остается в клетке, сохраняя молчание и уклонение от иммунной системы. По ходит взад и вперед между латентными и литических циклов, EBV-позитивные клетки могут эффективно накапливать мутации. Потому клеточный цикл арестован в клетках с литической EBV, вирус должен быть повторно замолчать, чтобы задержки в целях содействия деление клеток, а также скрыть от иммунного надзора, ограничивая вирусный экспрессию генов. По не убегает и пребывания скрытые в клетках, EBV-прежнему могут выражать онкогенов, и может, таким образом, внести свой ​​вклад в развитие и поддержание рака. Недавний отчет показал, что даже когда цикл литического не был полностью подавлен, клетки могут по-прежнему быстро расти, когда процесс литического является неудачной [109].



Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: