Fibre-reinforced concrete (FRC) is a cement-based composite
material reinforced with discrete, usually randomly distributed, fibres. Fibres of various shapes and sizes produced from steel, synthetics, glass, and natural materials can be used. However, for most structural purposes, steel fibres are the most used of all fibre materials, whereas synthetic fibres (e.g. polypropylene and nylon) are mainly used to control the early cracking (plastic-shrinkage cracks) in slabs [1]. Fibre reinforcement mainly enhances the post-cracking properties of concrete and leads to a more ductile material behavior. The increased ductility is due to the ability of the fibres to transfer tensile stresses across a cracked section, potentially leading to a reduction in crack widths. The extent of the crack-width reduction depends on the amount of fibres added as well as their