the ETM + - and MODIS-derived charcoal fraction maps is most probably  translation - the ETM + - and MODIS-derived charcoal fraction maps is most probably  Indonesian how to say

the ETM + - and MODIS-derived charc

the ETM + - and MODIS-derived charcoal fraction maps is most probably due to
the decrease in signal to noise, to which linear spectral unmixing is sensitive (Drake
et al. 1999). As linear spectral unmixing requires a lower degree of a priori
information than does the supervised maximum likelihood approach, the former
method is more suitable for multiscale assessment of area burned. Furthermore,
application of the charcoal fraction information could provide additional
information relating to the immediate post-fire effects, such as vegetation mortality
and potential recovery, which are important variables for monitoring long-term
carbon accumulation (Lentile et al. 2006).
7. Conclusion
This study has evaluated, for southern African savannah environments, the most
suitable method to produce a burned area reference map from Landsat ETM +
imagery for use as a surrogate to ground truth data when validating lower spatial
resolution burned area estimates derived from sensors such as MODIS. At the
ETM + scale, the application of multiband supervised classification that relies on training data, although an improvement over single band or index-based measures,
was less effective than maps produced by a fixed threshold based on the charcoal
fraction map derived from mixture modelling. The charcoal fraction map method
developed here uses only the generic savannah endmembers of charcoal, senesced
vegetation and green vegetation and therefore could be applied directly to imagery
of similar spatial resolution to ETM + . However, the more widespread utility of the
method at other spatial scales appears questionable, given its poor performance
when used with MODIS. The most effective method for use with MODIS was found
to be the MIRBI, segmented with a fixed threshold of 1.75. This confirms the basic
utility of the MIRBI approach for savannah burned area mapping, as presented by
Trigg and Flasse (2001).
Although these results are likely to be valid in other savannah or potentially in
similar semi-arid environments, further research is required in other fire-prone
environments, such as boreal and temperate forests. Following recent conclusions
by Lentile et al. (2006) and the results of the current study, we reiterate the need for
studies to comprehensively evaluate the efficacy of burned area mapping methods in
more than one study region or ecosystem type. By contrast, future studies should
seek to evaluate methods that are relevant to fires occurring globally. In this vein,
new approaches to burned area mapping are becoming available, including those
that use large time-series to detect the step-changes in reflectance that are expected
on burning (Roy et al. 2006). This research into optimal methods and their relative
accuracy should therefore be revisited when the development of these new
approaches reaches stability, as they offer the prospect of automated burned area
mapping across the African continent with little operator involvement.
Acknowledgements
Alistair Smith was supported by the NERC/GANE Thematic Program studentship
(NER/S/R/2000/04057). Special thanks to Karen Anderson and the staff of the
NERC/EPFS equipment pool for field spectrometry for use of the GER-3700
spectrometer. Alistair Smith is currently part of the Forest Public Access Resource
Center (ForestPARC) and is supported with funding from the Upper Midwest
Aerospace Consortium (UMAC), which is in turn supported with funds from
NASA. MODIS data were acquired as part of NASA’s Earth Science Enterprise
with algorithms developed by the MODIS Science Teams. Partial funding for this
research was provided by the USDA/USDI Joint Fire Sciences Program (Projects
05-4-1-07 and 05-2-1-101). The MODIS data were archived and distributed by the
Goddard DAAC. We thank the editor and the anonymous reviewers for their advice
and suggestions in improving this paper.
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
the ETM + - and MODIS-derived charcoal fraction maps is most probably due tothe decrease in signal to noise, to which linear spectral unmixing is sensitive (Drakeet al. 1999). As linear spectral unmixing requires a lower degree of a prioriinformation than does the supervised maximum likelihood approach, the formermethod is more suitable for multiscale assessment of area burned. Furthermore,application of the charcoal fraction information could provide additionalinformation relating to the immediate post-fire effects, such as vegetation mortalityand potential recovery, which are important variables for monitoring long-termcarbon accumulation (Lentile et al. 2006).7. ConclusionThis study has evaluated, for southern African savannah environments, the mostsuitable method to produce a burned area reference map from Landsat ETM +imagery for use as a surrogate to ground truth data when validating lower spatialresolution burned area estimates derived from sensors such as MODIS. At theETM + scale, the application of multiband supervised classification that relies on training data, although an improvement over single band or index-based measures,was less effective than maps produced by a fixed threshold based on the charcoalfraction map derived from mixture modelling. The charcoal fraction map methoddeveloped here uses only the generic savannah endmembers of charcoal, senescedvegetation and green vegetation and therefore could be applied directly to imageryof similar spatial resolution to ETM + . However, the more widespread utility of themethod at other spatial scales appears questionable, given its poor performancewhen used with MODIS. The most effective method for use with MODIS was foundto be the MIRBI, segmented with a fixed threshold of 1.75. This confirms the basicutility of the MIRBI approach for savannah burned area mapping, as presented byTrigg and Flasse (2001).Although these results are likely to be valid in other savannah or potentially insimilar semi-arid environments, further research is required in other fire-proneenvironments, such as boreal and temperate forests. Following recent conclusionsby Lentile et al. (2006) and the results of the current study, we reiterate the need forstudies to comprehensively evaluate the efficacy of burned area mapping methods inmore than one study region or ecosystem type. By contrast, future studies shouldseek to evaluate methods that are relevant to fires occurring globally. In this vein,new approaches to burned area mapping are becoming available, including thosethat use large time-series to detect the step-changes in reflectance that are expectedon burning (Roy et al. 2006). This research into optimal methods and their relativeaccuracy should therefore be revisited when the development of these newapproaches reaches stability, as they offer the prospect of automated burned areamapping across the African continent with little operator involvement.AcknowledgementsAlistair Smith was supported by the NERC/GANE Thematic Program studentship(NER/S/R/2000/04057). Special thanks to Karen Anderson and the staff of theNERC/EPFS equipment pool for field spectrometry for use of the GER-3700spectrometer. Alistair Smith is currently part of the Forest Public Access ResourceCenter (ForestPARC) and is supported with funding from the Upper MidwestAerospace Consortium (UMAC), which is in turn supported with funds fromNASA. MODIS data were acquired as part of NASA’s Earth Science Enterprisewith algorithms developed by the MODIS Science Teams. Partial funding for thisresearch was provided by the USDA/USDI Joint Fire Sciences Program (Projects05-4-1-07 and 05-2-1-101). The MODIS data were archived and distributed by theGoddard DAAC. We thank the editor and the anonymous reviewers for their adviceand suggestions in improving this paper.
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
ETM + - dan MODIS yang diturunkan peta fraksi arang yang paling mungkin karena
penurunan sinyal terhadap kebisingan, yang linear unmixing spektral sensitif (Drake
et al 1999.). Sebagai unmixing spektral linier membutuhkan tingkat yang lebih rendah dari apriori
informasi daripada yang diawasi pendekatan kemungkinan maksimum, mantan
metode ini lebih cocok untuk penilaian multiskala dari daerah yang terbakar. Selanjutnya,
penerapan informasi fraksi arang bisa memberikan tambahan
informasi yang berkaitan dengan efek langsung pasca-api, seperti angka kematian vegetasi
dan potensi pemulihan, yang merupakan variabel penting untuk memantau jangka panjang
akumulasi karbon (Lentile et al. 2006).
7. Kesimpulan
penelitian ini telah dievaluasi, untuk lingkungan savana Afrika bagian selatan, yang paling
metode yang sesuai untuk menghasilkan area peta referensi terbakar dari Landsat ETM +
citra untuk digunakan sebagai pengganti ke tanah Data kebenaran ketika memvalidasi spasial yang lebih rendah
resolusi perkiraan area yang terbakar berasal dari sensor seperti MODIS. Pada
ETM + skala, penerapan multiband diawasi klasifikasi yang mengandalkan data pelatihan, meskipun perbaikan atas pita tunggal atau tindakan berbasis indeks,
kurang efektif daripada peta yang dihasilkan oleh ambang tetap didasarkan pada arang
peta fraksi berasal dari pemodelan campuran . Fraksi arang metode peta
yang dikembangkan di sini hanya menggunakan endmembers savana generik arang, senesced
vegetasi dan vegetasi hijau dan karena itu dapat diterapkan langsung ke citra
resolusi spasial mirip dengan ETM +. Namun, utilitas lebih luas dari
metode pada skala spasial lainnya muncul dipertanyakan, mengingat kinerja yang buruk
bila digunakan dengan MODIS. Metode yang paling efektif untuk digunakan dengan MODIS ditemukan
menjadi MIRBI, tersegmentasi dengan ambang batas tetap 1,75. Ini menegaskan dasar
utilitas dari pendekatan MIRBI untuk savannah terbakar pemetaan daerah, sebagaimana yang disampaikan oleh
Trigg dan Flasse (2001).
Meskipun hasil ini cenderung berlaku di savannah lain atau berpotensi di
lingkungan semi-kering yang sama, penelitian lebih lanjut diperlukan di rawan kebakaran lainnya
lingkungan, seperti hutan boreal dan subtropis. Berikut kesimpulan baru-baru ini
oleh Lentile et al. (2006) dan hasil dari penelitian ini, kami menegaskan kembali perlunya
penelitian secara komprehensif mengevaluasi efektivitas metode pemetaan daerah yang terbakar di
lebih dari satu jenis wilayah studi atau ekosistem. Sebaliknya, studi masa depan harus
berusaha untuk mengevaluasi metode yang relevan dengan kebakaran yang terjadi secara global. Dalam lapisan ini,
pendekatan baru untuk pemetaan daerah yang terbakar menjadi tersedia, termasuk
yang menggunakan besar waktu-series untuk mendeteksi langkah-perubahan reflektansi yang diharapkan
dari pembakaran (Roy et al. 2006). Penelitian ini menjadi metode yang optimal dan relatif mereka
akurasi karena itu harus ditinjau kembali pada saat pengembangan ini baru
pendekatan mencapai stabilitas, karena mereka menawarkan prospek daerah yang terbakar otomatis
pemetaan di seluruh benua Afrika dengan keterlibatan operator kecil.
Ucapan Terima Kasih
Alistair Smith didukung oleh NERC / Program Tematik GANE beasiswa
(NER / S / R / 2000/04057). Terima kasih khusus kepada Karen Anderson dan staf dari
NERC / EPFS kolam renang peralatan untuk spektrometri lapangan untuk penggunaan GER-3700
spektrometer. Alistair Smith saat ini bagian dari Hutan Umum Akses Sumber Daya
Pusat (ForestPARC) dan didukung dengan dana dari Midwest atas
Aerospace Consortium (UMAC), yang pada gilirannya didukung dengan dana dari
NASA. Data MODIS diperoleh sebagai bagian dari NASA Earth Science Enterprise
dengan algoritma yang dikembangkan oleh MODIS Tim Science. Sebagian pendanaan untuk ini
penelitian disediakan oleh USDA / USDI Joint Api Program Ilmu (Proyek
05-4-1-07 dan 05-2-1-101). Data MODIS yang diarsipkan dan didistribusikan oleh
Goddard DAAC. Kami berterima kasih kepada editor dan pengulas anonim untuk saran mereka
dan saran dalam meningkatkan tulisan ini.
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2024 I Love Translation. All reserved.

E-mail: