The complex and interactive nature of intracellularsignaling pathways  translation - The complex and interactive nature of intracellularsignaling pathways  Indonesian how to say

The complex and interactive nature

The complex and interactive nature of intracellular
signaling pathways controlling cell division affords many
opportunities for virus manipulation strategies. Taking the
maxim“Set a thief to catch a thief”as a counter strategy,
however, provides us with the very same virus evasion
strategies as “ready-made tools” for the development of
novel antivirus therapeutics. The most obvious are attenuated virus vaccines with critical evasion genes deleted.
Similarly, vaccines against viruses causing cancer are now
being successfully developed. Finally, as viruses have been
playing chess with our cell biology and immune responses
for millions of years, the study of their evasion strategies
will also undoubtedly reveal new control mechanisms and
their corresponding cellular intracellular signaling pathways. This chapter will review the essentials of the cell cycle
and focus on host evasion mechanisms for cell cycle
manipulation evolved by viruses, in particular herpesviruses.
The cell cycle
The eukaryotic cell cycle is operationally divided into four
phases: G1, S, G2, and M. The G1 phase is the firstgap
during which cells organize themselves prior to DNA
replication. Decisive events during G1 phase determine
whether the cell proceeds to division, pauses, or exits the
cell cycle and enter the programmed cell death pathway.
The S phase is the stage at which DNA synthesis, and
hence duplication of the genome, occurs. During the second
gap, or G2, the cell prepares for the process of mitosis, and
the associated cell division, when the replicated chromosomes are segregated into separated nuclei and cytokinesis,
occurs to form two daughter cells. Once again, this second
gap phase provides an opportunity for vigilance, such as
recognition and repair of damaged DNA. Thus progression
to DNA replication and mitosis is signaled by the
intracellular checkpoints at the G1 and G2, respectively.
Regulation of cell division is critical for the normal
development and maintenance of multicellular organisms.
Loss of control of cell division ultimately leads to cancer,
killing many people every day. Although the basic elements
controlling the eukaryotic cell cycle were first described for
yeast in the late 1980s, it became clear that the essential
molecular processes are similar in all eukaryotic cells, from
yeast to mammals. The understanding of this basic
mechanism, coupled with research with diverse organisms,
each with its own particular experimental advantage, has
led to a better understanding of how the molecular events
required for cell division are controlled and coordinated.
Thekeyelement in the regulation of the eukaryotic cell
cycle is the periodic synthesis and destruction of cyclins,
proteins that associate with and activate cyclin-dependent
kinases (Cdks). The related sequential activation and
inactivation of cyclin-dependent kinases provide the basis
520 R. Nascimento et al.
for cell cycle regulation. At least 16 cyclins and nine Cdks
have been identified in mammalian cells (Johnson and
Walker1999). All cyclins contain a homology domain
known as the“cyclin box,” which functions to bind and
activate Cdks. However, not all cyclins and Cdks necessarily regulate the cell cycle. Other functions, such as
regulation of transcription, DNA repair, and apoptosis, have
been attributed to them (Johnson and Walker1999).
In addition to their interaction with cyclin, other levels of
regulation also exist for controlling the activity of Cdks
during the cell cycle. For example, the cyclin-dependent
kinase inhibitors (CdkIs) coordinate internal and external
signals, thereby impeding proliferation at several key
points, leading to both positive and negative regulation of
kinase activity. In addition, it is now clear that ubiquitinmediated proteolysis plays a crucial role in cell cycle
control by targeting cyclins and other regulators for
destruction at critical time points during the cell cycle.
The irreversibility of proteolysis provides a strong directionality to the cell cycle forcing it to go forward at several
critical points (Kastan and Bartek2004).
Progression through the cell cycle
The levels of D cyclins, which associate with and activate
Cdk4 and Cdk6, are regulated by growth factors such as
epidermal growth factor or insulin-like growth factor I. The
sequential activation of the two kinase complexes, Cdk4/6–
cyclin D and Cdk2–cyclin E, is the key event that leads to
cell cycle progression (Fig.1). These activated complexes
phosphorylate the retinoblastoma protein (pRB), first by the
Cdk4/6–cyclin D complex and subsequently by the Cdk2–
cyclin E complex. Phosphorylation of the Rb protein causes
its dissociation from E2F, allowing the activation of
proteins leading to progression into the S phase.
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
The complex and interactive nature of intracellularsignaling pathways controlling cell division affords manyopportunities for virus manipulation strategies. Taking themaxim“Set a thief to catch a thief”as a counter strategy,however, provides us with the very same virus evasionstrategies as “ready-made tools” for the development ofnovel antivirus therapeutics. The most obvious are attenuated virus vaccines with critical evasion genes deleted.Similarly, vaccines against viruses causing cancer are nowbeing successfully developed. Finally, as viruses have beenplaying chess with our cell biology and immune responsesfor millions of years, the study of their evasion strategieswill also undoubtedly reveal new control mechanisms andtheir corresponding cellular intracellular signaling pathways. This chapter will review the essentials of the cell cycleand focus on host evasion mechanisms for cell cyclemanipulation evolved by viruses, in particular herpesviruses.The cell cycleThe eukaryotic cell cycle is operationally divided into fourphases: G1, S, G2, and M. The G1 phase is the firstgapduring which cells organize themselves prior to DNAreplication. Decisive events during G1 phase determinewhether the cell proceeds to division, pauses, or exits thecell cycle and enter the programmed cell death pathway.The S phase is the stage at which DNA synthesis, andhence duplication of the genome, occurs. During the secondgap, or G2, the cell prepares for the process of mitosis, andthe associated cell division, when the replicated chromosomes are segregated into separated nuclei and cytokinesis,occurs to form two daughter cells. Once again, this secondgap phase provides an opportunity for vigilance, such asrecognition and repair of damaged DNA. Thus progressionto DNA replication and mitosis is signaled by theintracellular checkpoints at the G1 and G2, respectively.Regulation of cell division is critical for the normaldevelopment and maintenance of multicellular organisms.Loss of control of cell division ultimately leads to cancer,killing many people every day. Although the basic elementscontrolling the eukaryotic cell cycle were first described foryeast in the late 1980s, it became clear that the essentialmolecular processes are similar in all eukaryotic cells, fromyeast to mammals. The understanding of this basicmechanism, coupled with research with diverse organisms,each with its own particular experimental advantage, hasled to a better understanding of how the molecular eventsrequired for cell division are controlled and coordinated.Thekeyelement in the regulation of the eukaryotic cellcycle is the periodic synthesis and destruction of cyclins,proteins that associate with and activate cyclin-dependentkinases (Cdks). The related sequential activation andinactivation of cyclin-dependent kinases provide the basis520 R. Nascimento et al.for cell cycle regulation. At least 16 cyclins and nine Cdkshave been identified in mammalian cells (Johnson andWalker1999). All cyclins contain a homology domainknown as the“cyclin box,” which functions to bind andactivate Cdks. However, not all cyclins and Cdks necessarily regulate the cell cycle. Other functions, such asregulation of transcription, DNA repair, and apoptosis, havebeen attributed to them (Johnson and Walker1999).In addition to their interaction with cyclin, other levels ofregulation also exist for controlling the activity of Cdksduring the cell cycle. For example, the cyclin-dependentkinase inhibitors (CdkIs) coordinate internal and externalsignals, thereby impeding proliferation at several keypoints, leading to both positive and negative regulation ofkinase activity. In addition, it is now clear that ubiquitinmediated proteolysis plays a crucial role in cell cyclecontrol by targeting cyclins and other regulators fordestruction at critical time points during the cell cycle.The irreversibility of proteolysis provides a strong directionality to the cell cycle forcing it to go forward at severalcritical points (Kastan and Bartek2004).Progression through the cell cycleThe levels of D cyclins, which associate with and activateCdk4 and Cdk6, are regulated by growth factors such asepidermal growth factor or insulin-like growth factor I. Thesequential activation of the two kinase complexes, Cdk4/6–cyclin D and Cdk2–cyclin E, is the key event that leads tocell cycle progression (Fig.1). These activated complexesphosphorylate the retinoblastoma protein (pRB), first by theCdk4/6–cyclin D complex and subsequently by the Cdk2–cyclin E complex. Phosphorylation of the Rb protein causesits dissociation from E2F, allowing the activation ofproteins leading to progression into the S phase.
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
Sifat kompleks dan interaktif dari intraseluler
jalur sinyal mengendalikan pembelahan sel affords banyak
kesempatan untuk strategi manipulasi virus. Mengambil
pepatah "Set pencuri untuk menangkap pencuri" sebagai strategi counter,
bagaimanapun, memberikan kita virus penggelapan sangat sama
strategi sebagai "siap pakai alat" untuk pengembangan
terapi antivirus baru. Yang paling jelas yang dilemahkan vaksin virus dengan gen penggelapan kritis dihapus.
Demikian pula, vaksin terhadap virus yang menyebabkan kanker sekarang
sedang berhasil dikembangkan. Akhirnya, virus telah
bermain catur dengan biologi sel dan respon imun
selama jutaan tahun, studi tentang strategi penghindaran mereka
akan juga pasti mengungkapkan mekanisme kontrol baru dan
jalur sinyal mereka sesuai selular intraseluler. Bab ini akan meninjau penting dari siklus sel
dan fokus pada mekanisme penghindaran host untuk siklus sel
manipulasi berkembang oleh virus, di virus herpes tertentu.
Siklus sel
Siklus sel eukariotik secara operasional dibagi menjadi empat
tahap: G1, S, G2, dan M . Fase G1 adalah firstgap
selama sel mengorganisir diri sebelum DNA
replikasi. Peristiwa yang menentukan selama fase G1 menentukan
apakah hasil sel divisi, berhenti, atau keluar dari
siklus sel dan memasuki diprogram jalur kematian sel.
S fase adalah tahap di mana sintesis DNA, dan
karenanya duplikasi genom, terjadi. Selama kedua
gap, atau G2, sel mempersiapkan untuk proses mitosis, dan
pembelahan sel yang terkait, ketika kromosom direplikasi dipisahkan ke dalam inti dipisahkan dan sitokinesis,
terjadi untuk membentuk dua sel anak. Sekali lagi, ini kedua
fase gap memberikan kesempatan bagi kewaspadaan, seperti
pengakuan dan perbaikan DNA yang rusak. Dengan demikian perkembangan
replikasi DNA dan mitosis ditandai dengan
pos pemeriksaan intraseluler pada G1 dan G2, masing-masing.
Peraturan pembelahan sel sangat penting untuk normal
pengembangan dan pemeliharaan organisme multisel.
Kehilangan kontrol pembelahan sel pada akhirnya menyebabkan kanker,
membunuh banyak orang setiap hari. Meskipun elemen dasar
mengendalikan siklus sel eukariotik pertama kali dijelaskan untuk
ragi pada akhir 1980-an, menjadi jelas bahwa penting
proses molekuler serupa di semua sel eukariotik, dari
ragi untuk mamalia. Pemahaman dasar ini
mekanisme, ditambah dengan penelitian dengan organisme yang beragam,
masing-masing dengan keuntungan eksperimental sendiri khususnya, telah
menyebabkan pemahaman yang lebih baik tentang bagaimana peristiwa molekuler
diperlukan untuk pembelahan sel dikendalikan dan dikoordinasikan.
Thekeyelement dalam regulasi sel eukariotik
siklus adalah sintesis periodik dan perusakan siklin,
protein yang berasosiasi dengan dan mengaktifkan tergantung cyclin
kinase (Cdks). Aktivasi sekuensial terkait dan
inaktivasi kinase tergantung cyclin memberikan dasar
520 R. Nascimento dkk.
Untuk regulasi siklus sel. Setidaknya 16 siklin dan sembilan Cdks
telah diidentifikasi dalam sel mamalia (Johnson dan
Walker1999). Semua siklin mengandung domain homologi
dikenal sebagai "kotak cyclin," yang berfungsi untuk mengikat dan
mengaktifkan Cdks. Namun, tidak semua siklin dan Cdks tentu mengatur siklus sel. Fungsi lainnya, seperti
regulasi transkripsi, perbaikan DNA, dan apoptosis, telah
dikaitkan dengan mereka (Johnson dan Walker1999).
Selain interaksi mereka dengan cyclin, tingkat lain dari
peraturan juga ada untuk mengendalikan aktivitas Cdks
selama siklus sel . Sebagai contoh, tergantung cyclin
inhibitor kinase (CdkIs) mengkoordinasikan internal dan eksternal
sinyal, sehingga menghambat proliferasi di beberapa kunci
poin, yang mengarah ke kedua regulasi positif dan negatif dari
aktivitas kinase. Selain itu, sekarang jelas bahwa proteolisis ubiquitinmediated memainkan peran penting dalam siklus sel
kontrol dengan menargetkan siklin dan regulator lainnya untuk
kehancuran pada titik waktu kritis selama siklus sel.
The berbaliknya proteolisis menyediakan directionality kuat untuk siklus sel memaksanya untuk maju di beberapa
titik rawan (Kastan dan Bartek2004).
Kemajuan melalui siklus sel
Tingkat D siklin, yang bergaul dengan dan mengaktifkan
Cdk4 dan Cdk6, diatur oleh faktor pertumbuhan seperti
faktor pertumbuhan epidermal atau faktor pertumbuhan seperti insulin I. The
aktivasi berurutan dari dua kompleks kinase, Cdk4 / 6-
siklin D dan Cdk2-cyclin E, adalah peristiwa kunci yang mengarah ke
perkembangan siklus sel (Gambar 1). Ini kompleks diaktifkan
memfosforilasi protein retinoblastoma (pRB), pertama oleh
kompleks D Cdk4 / 6-siklin dan kemudian oleh Cdk2-
cyclin E kompleks. Fosforilasi protein Rb menyebabkan
disosiasinya dari E2F, yang memungkinkan aktivasi
protein yang mengarah ke perkembangan ke tahap S.
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: