3.2 Mapped areaThe total area mapped as affected by fire in East Kalim translation - 3.2 Mapped areaThe total area mapped as affected by fire in East Kalim Indonesian how to say

3.2 Mapped areaThe total area mappe

3.2 Mapped area
The total area mapped as affected by fire in East Kalimantan was 5.2 Mio. ha. The colours in Figure 4 A indicate
the four damage classes: A total of 34% have been assigned the two most severe damage classes 2 and 3.
Although both of these classes indicate that more than 80% of the vegetation have been damaged it is important
to be aware of the fact that the class 3 occurred mainly in ecologically important peat swamp and wetland areas
while class three was typically to be encountered in plantation areas and degraded grasslands. 42% of the burned
area have been assigned damage class 2 (50-80%) 24% have been assigned damage class 1 (25-50%). These
classes typically occured in dipterocarp forest. The burned area extends across the central Mahakam basin and
the coastland towards the slopes of the mountains in the north and west , where the fire extinguished.
3.3 Assessment of accuracy
Assessment of accuracy yielded quite different results for the air surveys and the block ground inventories. For
the accuracy of burn scar detection, the error of omission (burned mapped as unburned) was 5.5% and error of
commission (unburned mapped as burned) was 0.7%. Overall accuracy for discrimination of damage classes was
66.4%. More than 90% of all errors are assignations of an area to a neighbouring class and are therefore
considered to be slight.
For the block ground inventories results are considerably worse. Error of omission for burn scar mapping was
21%, error of commission 1.5%. The overall accuracy for class assignment was only 27.3% indicating that it was
not possible to discriminate damage classes.
Figure 4. Mapped area and Ground surveys. A: The burn scar map. Yellow: 25-50 % damage, orange: 50-80%
damage, brown: >80% damage, canopy remaining, red: >80% damage, soil widely exposed. B: GPS-recorded
tracks of ground surveys in 1998 and 1999. The backdrop to both images is the gamma-filtered mosaic of ER-2
SAR images from August 1997.
4 CONCLUSIONS
Ground and aerial evidence suggest that the marked decrease in backscatter can be attributed to the removal of
the vegetation cover and subsequently higher contribution of backscatter from dry soil. After rainfall, the soil
becomes wet and thus has a higher dielectric constant, leading to a higher radar reflectivity (Ulaby et al. 1986).
In Dipterocarp forests, the fire leads to a removal of the leaves, while the majority of the dead trees remain
standing. This results in pattern of high spatial variability because the radar beam is reflected by remaining
canopy ins some places while in others it may penetrate to the forest floor or double bounce from moist dead tree
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
3.2 dipetakan daerahTotal luas dipetakan terpengaruh oleh api di Kalimantan Timur adalah 5.2 Mio. Ha. Warna dalam gambar 4 A indicateempat merusak kelas: total 34% telah ditetapkan dua paling parah kerusakan kelas 2 dan 3.Meskipun kedua kelas ini menunjukkan bahwa lebih dari 80% dari vegetasi telah rusak pentinguntuk menyadari fakta bahwa kelas 3 terjadi terutama di daerah rawa dan lahan basah penting secara ekologis gambutSementara kelas tiga adalah biasanya ditemui di daerah-daerah perkebunan dan terdegradasi padang rumput. 42% dari dibakardaerah telah ditetapkan kerusakan kelas 2 (50-80%) 24% telah ditetapkan kerusakan kelas 1 (25-50%). Inikelas biasanya terjadi di hutan dipterokarpa. Area yang terbakar memanjang di sungai Mahakam pusat danpantai menuju lereng pegunungan di sebelah utara dan Barat, dimana api dipadamkan.3.3 penilaian akurasiPenilaian akurasi menghasilkan hasil yang sangat berbeda untuk survei udara dan blok tanah persediaan. Untukkeakuratan deteksi bekas luka bakar, kesalahan dari kelalaian (dibakar dipetakan sebagai pasanglah) adalah 5,5% dan kesalahanKomisi (pasanglah dipetakan seperti dibakar) adalah 0,7%. Secara keseluruhan adalah akurasi untuk diskriminasi kelas kerusakan66.4%. Lebih dari 90% dari semua kesalahan assignations daerah untuk kelas tetangga dan oleh karena itudianggap sebagai sedikit.Untuk blok tanah persediaan hasil jauh lebih buruk. Kesalahan dari kelalaian untuk membakar bekas luka pemetaan adalah21%, kesalahan Komisi 1,5%. Keseluruhan keakuratan untuk tugas kelas adalah hanya 27. 3% menunjukkan bahwa itutidak mungkin untuk membedakan kelas kerusakan.Gambar 4. Area dipetakan dan tanah survei. J: peta bekas luka bakar. Kuning: 25-50% kerusakan, jeruk: 50-80%kerusakan, cokelat: > 80% kerusakan, kanopi yang tersisa, merah: > 80% kerusakan, tanah yang luas terbuka. B: GPS-rekaman.trek tanah survei pada tahun 1998 dan 1999. Latar belakang gambar kedua adalah gamma-disaring mosaik ER-2SAR gambar dari Agustus 1997.KESIMPULAN 4Tanah dan udara bukti menunjukkan bahwa penurunan backscatter dapat dikaitkan dengan penghapusanTutupan vegetasi dan kemudian lebih tinggi kontribusi backscatter dari tanah kering. Setelah curah hujan, tanahmenjadi basah dan dengan demikian memiliki lebih tinggi dielektrik konstanta, mengarah ke lebih tinggi radar reflektivitas (Ulaby et al., 1986).Di hutan dipterokarpa, api menyebabkan penghapusan daun, sementara sebagian besar pohon yang mati tetapberdiri. Ini hasil dalam pola variabilitas spasial yang tinggi karena sinar radar tercermin tersisakanopi ins beberapa tempat sementara di lain itu mungkin menembus lantai hutan atau ganda bouncing dari pohon mati lembab
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: