d. Use the attribute mean to fill in the missing value:For example, su translation - d. Use the attribute mean to fill in the missing value:For example, su Indonesian how to say

d. Use the attribute mean to fill i

d. Use the attribute mean to fill in the missing value:
For example, suppose that the average income of AllElectronics
customers is $28,000.Use this value to replace the missing value for
income.
e. Use the attribute mean for all samples belonging to the same
class as the given tuple: For example, if classifying customers
according to credit risk, replace the missing value with the
average income value for customers in the same credit risk
category as that of the given tuple.
f. Use the most probable value to fill in the missing value: This
may be determined with regression, inference-based tools using
a Bayesian formalism, or decision tree induction. For example,
using the other customer attributes in your data set, you may
construct a decision tree to predict the missing values for
income.
b) Noisy data
“What is noise?" Noise is a random error or variance in a
measured variable. Given a numeric attribute such as, say,
price, how can we “smooth" out the data to remove the noise?
Let's look at the following data smoothing techniques.
a. Binning methods:[1] Binning methods smooth a sorted data
value by consulting the “neighborhood", or values around it.
The sorted values are distributed into a number of “buckets", or
bins. Because binning methods consult the neighborhood of
values, they perform local smoothing. Figure illustrates some
binning techniques. In this example, the data for price are first
sorted and then partitioned into equal-frequency bins of size 3
(i.e., each bin contains 3 values). In smoothing by bin means,
each value in a bin is replaced by the mean value of the bin.
For example, the mean of the values 4, 8, and 15 in Bin 1 is 9.
Therefore, each original value in this bin is replaced by the
value 9. Similarly, smoothing by bin medians can be employed,
in which each bin value is replaced by the bin median. In
smoothing by bin boundaries, the minimum and maximum
values in a given bin are identified as the bin boundaries.
Each bin value is then replaced by the closest boundary value.
In general, the larger the width, the greater the effect of the
smoothing. Alternatively, bins may be equal-width, where the
interval range of values in each bin is constant.
not foolproof.
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
d. Use the attribute mean to fill in the missing value:For example, suppose that the average income of AllElectronicscustomers is $28,000.Use this value to replace the missing value forincome.e. Use the attribute mean for all samples belonging to the sameclass as the given tuple: For example, if classifying customersaccording to credit risk, replace the missing value with theaverage income value for customers in the same credit riskcategory as that of the given tuple.f. Use the most probable value to fill in the missing value: Thismay be determined with regression, inference-based tools usinga Bayesian formalism, or decision tree induction. For example,using the other customer attributes in your data set, you mayconstruct a decision tree to predict the missing values forincome.b) Noisy data“What is noise?" Noise is a random error or variance in ameasured variable. Given a numeric attribute such as, say,price, how can we “smooth" out the data to remove the noise?Let's look at the following data smoothing techniques.a. Binning methods:[1] Binning methods smooth a sorted datavalue by consulting the “neighborhood", or values around it.The sorted values are distributed into a number of “buckets", orbins. Because binning methods consult the neighborhood ofvalues, they perform local smoothing. Figure illustrates somebinning techniques. In this example, the data for price are firstsorted and then partitioned into equal-frequency bins of size 3(i.e., each bin contains 3 values). In smoothing by bin means,each value in a bin is replaced by the mean value of the bin.For example, the mean of the values 4, 8, and 15 in Bin 1 is 9.Therefore, each original value in this bin is replaced by thevalue 9. Similarly, smoothing by bin medians can be employed,in which each bin value is replaced by the bin median. Insmoothing by bin boundaries, the minimum and maximumvalues in a given bin are identified as the bin boundaries.Each bin value is then replaced by the closest boundary value.In general, the larger the width, the greater the effect of thesmoothing. Alternatively, bins may be equal-width, where theinterval range of values in each bin is constant.not foolproof.
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
d. Gunakan atribut berarti untuk mengisi nilai yang hilang:
Sebagai contoh, anggaplah bahwa pendapatan rata-rata AllElectronics
pelanggan adalah $ 28,000.Use nilai ini untuk mengganti nilai yang hilang untuk
pendapatan.
E. Gunakan atribut berarti untuk semua sampel milik sama
kelas sebagai tuple yang diberikan: Misalnya, jika mengklasifikasi pelanggan
menurut risiko kredit, mengganti nilai yang hilang dengan
nilai rata-rata pendapatan bagi pelanggan di risiko kredit yang sama
kategori seperti yang dari yang diberikan tuple.
f. Menggunakan nilai yang paling mungkin untuk mengisi nilai yang hilang: ini
dapat ditentukan dengan regresi, alat berbasis inferensi menggunakan
formalisme Bayesian, atau pohon keputusan induksi. Misalnya,
menggunakan pelanggan lain atribut dalam set data Anda, Anda mungkin
membangun pohon keputusan untuk memprediksi nilai-nilai yang hilang untuk
pendapatan.
B) Data Bising
"Apa kebisingan?" Kebisingan adalah kesalahan acak atau varians dalam
variabel yang diukur. Mengingat atribut numerik seperti, katakanlah,
harga, bagaimana bisa kita "halus" keluar data untuk menghilangkan kebisingan?
Mari kita lihat data berikut teknik smoothing.
a. Binning metode: [1] metode Binning halus data
diurutkan. Nilai dengan berkonsultasi dengan "lingkungan", atau nilai-nilai di sekitarnya
Nilai yang diurutkan didistribusikan ke sejumlah "ember", atau
sampah. Karena metode binning berkonsultasi lingkungan
nilai-nilai, mereka melakukan smoothing lokal. Gambar menggambarkan beberapa
teknik Binning. Dalam contoh ini, data harga yang pertama
diurutkan dan kemudian dibagi menjadi sampah sama-frekuensi ukuran 3
(yaitu, setiap bin berisi 3 nilai). Di smoothing dengan cara bin,
setiap nilai dalam bin diganti dengan nilai rata-rata sampah.
Sebagai contoh, rata-rata nilai 4, 8, dan 15 di Bin 1 adalah 9.
Oleh karena itu, setiap nilai asli di bin ini digantikan oleh
nilai 9. Demikian pula, smoothing oleh median bin dapat digunakan,
di mana setiap nilai bin digantikan oleh median bin. Di
smoothing oleh batas-batas bin, minimum dan maksimum
nilai dalam sebuah bin diberikan diidentifikasi sebagai batas bin.
Setiap nilai bin kemudian diganti dengan nilai batas terdekat.
Secara umum, semakin besar lebar, semakin besar efek dari
smoothing. Atau, sampah mungkin sama-lebar, di mana
rentang interval nilai pada masing-masing bin adalah konstan.
Tidak sangat mudah.
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: