invested illiquid asset. However, when the illiquid asset cannot be so translation - invested illiquid asset. However, when the illiquid asset cannot be so Indonesian how to say

invested illiquid asset. However, w

invested illiquid asset. However, when the illiquid asset cannot be sold, the investor is
restrained from rebalancing portfolio proportions to their original levels, as would be
optimal in the classical
Merton (1969
,
1971
) portfolio choice framework. In this sense, the
definition of illiquidity adopted here is that it is the foregone opportunity to fully control
portfolio proportions over time when illiquid and liquid assets are combined in a
portfolio. This foregone opportunity raises a number of key questions that have not been
addressed in the previous literature:
Q1
. How do portfolio weights behave when liquid and illiquid assets are combined
in a portfolio and what determines their dynamics?
Q2
. How does it affect the risk and return of a portfolio if portfolio proportions
cannot be fully controlled?
To address these issues, this paper examines the implications of illiquidity on portfolio
dynamics within a novel continuous-time framework. In this framework, the liquid asset
can always be traded. The illiquid asset can always be bought on the market, but cannot
be sold once it has been acquired. However, the illiquid asset provides a liquid
“dividend” which depends on its current value. This liquid dividend is assumed to be
reinvested into the liquid asset in the model. In addition, it is assumed that a fraction of
the liquid asset is liquidated at each instant in time and is invested into the illiquid asset.
This modeling approach results is a circular flow of capital between the investor’s
sub-portfolios of invested liquid and illiquid asset. Albeit being stylized to some degree,
this circular flow of capital captures well the typical process of how investments into
illiquid assets are made over time. The modeling framework also has the advantage that
it captures the intuitive notion of illiquidity as the absence of the possibility to fully
control portfolio proportions. Finally, it also has the advantage that it can be analyzed in
terms of its asymptotic properties, as portfolio proportions and returns converge to
stable steady-state distributions over time.
This paper makes two key contributions to the existing literature on asset pricing
and illiquidity. The first is to study the effects of illiquidity on portfolio weight
dynamics. It is a standard result from the
Merton (1969
,
1971
) portfolio choice
framework that an investor’s utility-maximizing strategy is to continuously re-balance
portfolio proportions to keep them constant over time when asset returns are normally
distributed. This optimal strategy is no longer attainable when parts of the assets in the
overall portfolio cannot be sold. The paper shows that the dynamics of the portfolio
proportions can be described in terms of non-linear stochastic differential equations
(SDEs) and examines their properties using numerical examples. Overall, the results of
this numerical analysis reveal that investors should be prepared for potentially large
and skewed variations in portfolio weights and can thus be away from optimal
diversification for relatively long time periods when adding illiquid assets to their
portfolios. The volatility of the portfolio proportions increases with increasing levels of
the return volatilities of the liquid and illiquid assets and decreases when the spread
between the expected returns of the assets decreases. Interestingly, the volatility of the
portfolio proportions also decreases when the return correlation between the liquid and
illiquid assets is high. The economic rationale of this result is that a high correlation
provides a natural hedge against changes in asset weights. Thus, when investing into
liquid and illiquid assets, the return correlation between these two types of assets not
only determines the level of portfolio return diversification, but is also a main
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
menginvestasikan aset likuid. Namun, ketika aset likuid tidak dapat dijual, investor adalahmenahan diri dari menyeimbangkan portofolio proporsi ke tingkat asli mereka, seperti yang akanoptimal dalam klasikMerton (1969,1971) portofolio pilihan kerangka. Dalam pengertian ini,definisi illiquidity yang dianut di sini adalah bahwa itu adalah kesempatan terdahulu untuk mengontrol secara penuhportofolio proporsi dari waktu ke waktu ketika aset likuid dan cair digabungkan dalamportofolio. Kesempatan terdahulu ini menimbulkan sejumlah pertanyaan kunci yang belumdibahas dalam literatur sebelumnya:Q1. Bagaimana portofolio bobot berperilaku ketika aset cair dan likuid digabungkandalam portofolio dan apa yang menentukan dinamika?Q2. Bagaimana ini mempengaruhi resiko dan kembali portofolio jika portofolio proporsitidak sepenuhnya dapat dikontrol?Untuk mengatasi masalah ini, karya ini menelaah implikasi dari illiquidity pada portofoliodinamika dalam kerangka waktu kontinu novel. Dalam kerangka aset cairdapat selalu diperdagangkan. Aset likuid selalu harus dibeli di pasar, tapi tidak bisaDijual setelah mereka telah diakuisisi. Namun, aset likuid memberikan cairan"dividen" yang tergantung pada nilai saat ini. Dividen cair ini dianggapdiinvestasikan kembali menjadi aset cair dalam model. Selain itu, diasumsikan bahwa sebagian kecil dariaset cair dilikuidasi pada setiap instan dalam waktu dan diinvestasikan ke dalam aset likuid.Ini model pendekatan hasil adalah melingkar aliran modal antara investorsub portofolio aset cair dan likuid yang diinvestasikan. Meskipun yang bergaya untuk beberapa derajat,aliran ini melingkar modal menangkap baik proses khas bagaimana investasi ke dalamaset likuid terbuat dari waktu ke waktu. Kerangka model juga memiliki keuntungan yangia menangkap gagasan intuitif illiquidity sebagai tidak adanya kemungkinan untuk sepenuhnyakontrol portofolio proporsi. Akhirnya, juga memiliki keuntungan bahwa itu dapat dianalisisketentuan sifat asimtotik, sebagai portofolio proporsi dan kembali berkumpul untukdistribusi mapan stabil dari waktu ke waktu.Karya ini membuat dua kunci kontribusi literatur yang ada pada harga asetdan illiquidity. Yang pertama adalah untuk mempelajari efek dari illiquidity pada portofolio beratdinamika. Ini adalah hasil standar dariMerton (1969,1971) portofolio pilihankerangka kerja yang investor memaksimalkan utilitas strategi adalah untuk terus-menerus menyeimbangkan kembaliportofolio proporsi agar mereka tetap konstan dari waktu ke waktu ketika kembali aset yang biasanyadidistribusikan. Strategi optimal ini dicapai tidak lagi ketika bagian dari aset diportofolio secara keseluruhan tidak dapat dijual. Karya menunjukkan bahwa dinamika portofolioproporsi dapat digambarkan dalam hal non-linear persamaan diferensial stokastik(SDEs) dan memeriksa sifat-sifat mereka menggunakan contoh-contoh numerik. Secara keseluruhan, hasilanalisis numerik ini mengungkapkan bahwa investor harus siap untuk berpotensi besardan miring variasi dalam portofolio beban dan dengan demikian dapat dari optimaldiversifikasi untuk periode waktu yang relatif lama ketika menambahkan aset likuid merekaportofolio. Volatilitas proporsi portofolio meningkat dengan peningkatan tingkatvolatilities kembali aset cair dan likuid dan menurun ketika penyebaranantara pengembalian yang diharapkan aset berkurang. Menariknya, volatilitasportofolio proporsi juga menurun ketika kembali korelasi antara cairan danaset likuid tinggi. Alasan ekonomi dari hasil ini adalah bahwa korelasi tinggimenyediakan pagar alam terhadap perubahan beban aset. Dengan demikian, ketika berinvestasi keaset cair dan likuid, kembali korelasi antara kedua jenis aset tidakhanya menentukan tingkat diversifikasi portofolio kembali, tetapi juga utama
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: