senescence. This process is accompanied by increase complexity in the  translation - senescence. This process is accompanied by increase complexity in the  Indonesian how to say

senescence. This process is accompa

senescence. This process is accompanied by increase complexity in the stand structure and may be accompanied by species composition change (Aakala et al., 2007). This process eventually led to an unevenage structure with more open canopy (St-Denis et al., 2010). In black spruce stands, break-up of the canopy has been described to occur in a clustered arrangement (Lussier et al., 2002) which has often been attributed to the contagious properties of biotic mortality agents (Aakala et al., 2007). Armillaria has been previously associated with clustered mortality of mountain pine (Dobbertin et al., 2001). The creation of active Armillaria disease centers in the DMPF and PPF is accelerating this process by promoting canopy gaps (Epp et al., 2009).
In this study, the upland black spruce stands are in an area of active forest management and mortality due to Armillaria rot disease has negative economic implications (Knowles, 2007) by its impact, amongst others, on determination of the annual allowable cut (AAC) given the high proportion of stands about 130 years of age. At the moment, an overestimation in the amount of available wood may be expected assuming Armillaria-related mortality is not factored into the AAC modeling process. In Czechoslovakia, Hrib et al. (1983) recommended that harvesting of Armillaria-infected norway spruce (Picea abies (L.) Karst) occur at 70–80 years of age, before significant growth decline and mortality. In our study area, the average commercial rotation age of upland black spruce stands is 75 years (Epp et al., 2009) which seems suitable to avoid growth decline, rot and tree mortality. However, harvesting often occurs well after rotation age and wood supply models currently consider that these forests will be available for future use.
Managing upland black spruce stands in a context of forest fire suppression, changing climate, and aging forests poses a number of challenges. Harvesting may not be the most pragmatic option as Armillaria is considered a ‘disease of the site’ which spreads in expansive mycelial clones which range in size from 1 to 5 hectares in some areas, and 20–965 hectares in others (Hagle, 2006). Established mycelia are essentially permanent, even if stump and root removal is undertaken (DeLong et al., 2005; Vasaitis et al., 2008). General forest management operations also seem to favor the fungus (Morrison and Mallet, 1996; Cruickshank, 2000) and planted seedlings are highly susceptible to infection (Piercey-Normore and Bérubé, 2000). There is debate as to whether increasing vigor of existing or replanted trees by thinning or other means is an effective strategy to combat the disease (Rosso, 1994; Hagle, 2006; Filip et al., 2009). In a context where Canadian boreal forestry is moving towards natural-disturbance-based-management, regulating forest age structure by establishing a 75-year rotation age also poses problems associated with the slow disappearance in the landscape of older black spruce stands typical of stages of development defined by Bergeron et al. (2002) as the second and third structural cohorts. Allowing a proportion of infected stands to persist would facilitate the development of subsequent cohorts and structural variability across the landscape (Epp et al., 2009). Lengthening rotation ages (the stand age at which harvesting can commence) would allow for stands to enter second and third structural cohorts, providing for natural variability on the landscape as well as inputs of coarse woody debris that are not possible with traditional silviculture (Epp et al., 2009). Allowing a proportion of Armillaria infected stands to persist would aid in the provision of variable forest habitats that would be useful in managing for biodiversity conservation in the area. For example, ongoing research is suggesting that Armillaria root disease contributes to increased species diversity in infected red pine stands (Ostry and Moore, 2008).
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
senescence. Proses ini disertai dengan peningkatan kompleksitas dalam struktur berdiri dan dapat disertai dengan perubahan komposisi spesies (Aakala et al., 2007). Proses ini akhirnya mengarah pada struktur unevenage dengan kanopi lebih terbuka (St-Denis et al., 2010). Di spruce hitam berdiri, break-up dari kanopi telah digambarkan terjadi di pengaturan berkerumun (Lussier et al., 2002) yang sering dikaitkan dengan sifat-sifat menular biotik kematian agen (Aakala et al., 2007). Armillaria telah sebelumnya dikaitkan dengan kematian berkumpul Pine mountain (Dobbertin et al., 2001). Penciptaan pusat-pusat penyakit Armillaria aktif di DMPF dan PPF adalah mempercepat proses ini dengan mempromosikan kanopi kesenjangan (Epp et al., 2009).Dalam studi ini, berdiri gogo spruce hitam di daerah pengelolaan hutan yang aktif dan kematian akibat penyakit busuk Armillaria memiliki implikasi ekonomi negatif (Knowles, 2007) oleh dampak, antara lain, pada penentuan tahunan tebang (AAC) diberikan proporsi tinggi berdiri sekitar 130 tahun usia. Saat ini, harga yg terlalu tinggi dalam jumlah kayu yang tersedia dapat diharapkan asumsi Armillaria yang berhubungan dengan kematian tidak diperhitungkan dalam AAC pemodelan proses. Di Cekoslowakia, Hrib et al. (1983) direkomendasikan bahwa pemanenan terinfeksi Armillaria spruce Norwegia (abies Picea (L.) Karst) terjadi pada 70-80 tahun, sebelum penurunan pertumbuhan yang signifikan dan kematian. Di daerah studi kami, usia rata-rata komersial rotasi gogo hitam spruce berdiri adalah 75 tahun (Epp et al., 2009) yang tampaknya cocok untuk menghindari pertumbuhan menurun, rot dan pohon kematian. Namun, panen sering terjadi baik setelah usia rotasi dan pasokan kayu model saat ini menganggap bahwa hutan ini akan tersedia untuk penggunaan masa depan.Managing upland black spruce stands in a context of forest fire suppression, changing climate, and aging forests poses a number of challenges. Harvesting may not be the most pragmatic option as Armillaria is considered a ‘disease of the site’ which spreads in expansive mycelial clones which range in size from 1 to 5 hectares in some areas, and 20–965 hectares in others (Hagle, 2006). Established mycelia are essentially permanent, even if stump and root removal is undertaken (DeLong et al., 2005; Vasaitis et al., 2008). General forest management operations also seem to favor the fungus (Morrison and Mallet, 1996; Cruickshank, 2000) and planted seedlings are highly susceptible to infection (Piercey-Normore and Bérubé, 2000). There is debate as to whether increasing vigor of existing or replanted trees by thinning or other means is an effective strategy to combat the disease (Rosso, 1994; Hagle, 2006; Filip et al., 2009). In a context where Canadian boreal forestry is moving towards natural-disturbance-based-management, regulating forest age structure by establishing a 75-year rotation age also poses problems associated with the slow disappearance in the landscape of older black spruce stands typical of stages of development defined by Bergeron et al. (2002) as the second and third structural cohorts. Allowing a proportion of infected stands to persist would facilitate the development of subsequent cohorts and structural variability across the landscape (Epp et al., 2009). Lengthening rotation ages (the stand age at which harvesting can commence) would allow for stands to enter second and third structural cohorts, providing for natural variability on the landscape as well as inputs of coarse woody debris that are not possible with traditional silviculture (Epp et al., 2009). Allowing a proportion of Armillaria infected stands to persist would aid in the provision of variable forest habitats that would be useful in managing for biodiversity conservation in the area. For example, ongoing research is suggesting that Armillaria root disease contributes to increased species diversity in infected red pine stands (Ostry and Moore, 2008).
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
penuaan. Proses ini disertai dengan peningkatan kompleksitas dalam struktur berdiri dan bisa disertai dengan spesies perubahan komposisi (Aakala et al., 2007). Proses ini akhirnya menyebabkan struktur unevenage dengan kanopi lebih terbuka (St-Denis et al., 2010). Di tribun cemara hitam, break-up kanopi telah dijelaskan terjadi dalam susunan berkerumun (Lussier et al., 2002) yang sering dikaitkan dengan sifat menular dari agen kematian biotik (Aakala et al., 2007). Armillaria sebelumnya telah dikaitkan dengan kematian berkerumun pinus gunung (Dobbertin et al., 2001). Penciptaan pusat penyakit Armillaria aktif dalam DMPF dan PPF mempercepat proses ini dengan mempromosikan kesenjangan tajuk (Epp et al., 2009).
Dalam penelitian ini, dataran tinggi berdiri cemara hitam di daerah pengelolaan hutan aktif dan kematian akibat Armillaria penyakit busuk memiliki implikasi negatif ekonomi (Knowles, 2007) oleh dampaknya, antara lain, pada penentuan jatah tebangan tahunan (AAC) mengingat tingginya proporsi berdiri sekitar 130 tahun. Pada saat ini, terlalu tinggi dalam jumlah yang tersedia kayu dapat diharapkan asumsi kematian Armillaria terkait tidak diperhitungkan dalam proses pemodelan AAC. Di Cekoslovakia, Hrib et al. (1983) merekomendasikan bahwa pemanenan Armillaria terinfeksi norway cemara (Picea abies (L.) Karst) terjadi pada 70-80 tahun, sebelum penurunan pertumbuhan yang signifikan dan kematian. Di daerah penelitian kami, rata-rata usia rotasi komersial cemara hitam dataran tinggi berdiri adalah 75 tahun (Epp et al., 2009) yang tampaknya cocok untuk menghindari penurunan pertumbuhan, busuk dan kematian pohon. Namun, panen sering terjadi baik setelah usia rotasi dan pasokan kayu model saat ini menganggap bahwa hutan-hutan ini akan tersedia untuk penggunaan masa depan.
Mengelola dataran tinggi berdiri cemara hitam dalam konteks pencegah kebakaran hutan, perubahan iklim, dan penuaan hutan menimbulkan sejumlah tantangan. Panen mungkin bukan pilihan yang paling pragmatis sebagai Armillaria dianggap sebagai 'penyakit dari situs' yang menyebar di klon miselium luas yang berbagai ukuran dari 1 sampai 5 hektar di beberapa daerah, dan 20-965 hektar di lain (hagle, 2006) . Miselia didirikan pada dasarnya permanen, bahkan jika tunggul dan akar penghapusan dilakukan (DeLong et al, 2005;.. Vasaitis et al, 2008). Operasi pengelolaan hutan secara umum juga tampaknya mendukung jamur (Morrison dan Mallet, 1996; Cruickshank, 2000) dan ditanam bibit sangat rentan terhadap infeksi (Piercey-Normore dan Berube, 2000). Ada perdebatan apakah meningkatkan kekuatan pohon yang ada atau ditanam kembali oleh penipisan atau cara lain adalah strategi yang efektif untuk memerangi penyakit (Rosso, 1994; hagle, 2006; Filip et al, 2009.). Dalam konteks di mana kehutanan boreal Kanada bergerak menuju berbasis-gangguan alam-manajemen, mengatur struktur umur hutan dengan membentuk usia rotasi 75 tahun juga menimbulkan masalah yang terkait dengan hilangnya lambat dalam lanskap cemara hitam yang lebih tua berdiri khas tahap pengembangan didefinisikan oleh Bergeron et al. (2002) sebagai kohort struktural kedua dan ketiga. Memungkinkan proporsi yang terinfeksi berdiri untuk bertahan akan memfasilitasi pengembangan kohort selanjutnya dan variabilitas struktural di seluruh lanskap (Epp et al., 2009). Perpanjangan rotasi usia (usia berdiri di mana panen dapat dimulai) akan memungkinkan untuk berdiri untuk masuk kohort struktural kedua dan ketiga, menyediakan untuk variabilitas alami pada lanskap serta masukan dari puing-puing kayu kasar yang tidak mungkin dengan silvikultur tradisional (Epp et al., 2009). Memungkinkan proporsi Armillaria terinfeksi berdiri untuk bertahan akan membantu dalam penyediaan habitat hutan variabel yang akan berguna dalam mengelola konservasi keanekaragaman hayati di daerah. Misalnya, penelitian yang sedang berlangsung yang menyarankan bahwa penyakit Armillaria akar kontribusi untuk peningkatan keanekaragaman spesies di terinfeksi tegakan pinus merah (Ostry dan Moore, 2008).
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: