Black carbon is a product of incomplete combustion, which together wit translation - Black carbon is a product of incomplete combustion, which together wit Indonesian how to say

Black carbon is a product of incomp

Black carbon is a product of incomplete combustion, which together with organic carbon constitutes the majority of particulate carbon. Approximately 5–10% of fire smoke particles are BC, as compared to about 50–60% for OC, and the variations can be due to different fuel types and combustion conditions, as well as the analytical methods used (Reid et al., 2005a). The OC/BC ratios in Wiedinmyer et al. (2011) were about 10:1, and their total amounts were about half of those of PM10. According to IPCC (2007), global fossil fuel emission estimates of BC at present range from 5.8 to 8.0 Tg C yr1 (Haywood and Boucher, 2000). Biomass burning (forest and savanna burning) contributes about 40% of total BC emissions. Bond et al. (2004) estimated the total current global emission of BC to be 4.6 Tg C yr1 from fossil fuel and biofuel combustion and 3.3 Tg C yr1 from open biomass burning. Wiedinmyer et al. (2011) estimated the global fire BC emission of 2.2 Tg C yr1 for the period of 2005–2010, which is comparable to that from The Global Fire Emissions Database (GFED) (Randerson et al., 2005; van der Werf et al., 2004, 2006, 2010). One of the important properties of smoke as well as other tropospheric aerosols is its large spatial variability due to the local and regional origination of fires, short periods of individual fire events, and short lifetime of particles after being emitted into the atmosphere. Measurements have shown dramatically large amounts of wildland fire emission in the Amazon and North America (e.g., Radke, 1991; Ward and Hardy, 1991; Liu, 2004) during individual fires or a burning season, making smoke an important factor to radiation budget in these regions. Biomass burning in the tropics is of particular interest because of the large extent of forest clearing and agricultural burning. Carbon emission from fires in the major geographical regions or ecoregions in North America have been estimated in many studies (e.g., French et al., 2004, 2011; Amiro et al., 2001; Kasischke and Bruhwiler, 2002; Ito and Penner, 2004; Hoelzemann et al., 2004; Liu, 2004; Liu et al., 2005a; Kasischke and Johnstone, 2005; Wiedinmyer et al., 2006; Schultz et al., 2008; Reid et al., 2009; van der Werf et al., 2010). The estimates from van der Werf et al. (2010) are on the order of 10 Tg C yr1 for the continental US and Mexico and 50 Tg C yr1 for Canada and Alaska.
2.2. Impacts of smoke emissions on atmospheric radiation Incident
solar radiation that drives the earth’s climate system is either reflected back to space (30%) or absorbed by the earth’s surface and atmosphere (70%). It is this absorbed radiation that heats the planet and atmosphere (Ramanathan and Feng, 2009). The overall energy budget for the planet includes not only the amount of solar radiation absorbed and reflected by the earth’s surface and atmosphere, but also the amount of absorbed radiation re-emitted from the earth’s surface and atmosphere as long wave radiation. Greenhouse gases and aerosols produced from wildland fires and generated in the atmosphere through chemical reactions involving precursor chemicals emitted from those fires affect the earth’s overall energy balance (and thus temperature) because they also absorb and reflect long-wave and solar radiation, clouds with the roles of smoke particles as CCNs. The changes in radiation and clouds can further affect energy and water conditions for the soil-vegetation system.
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
Hitam karbon adalah produk dari pembakaran lengkap, yang bersama-sama dengan karbon organik merupakan mayoritas partikulat karbon. Sekitar 5-10% dari partikel asap yang SM, dibandingkan dengan sekitar 50-60% untuk OC, dan variasi api dapat disebabkan oleh bahan bakar yang berbeda jenis dan kondisi pembakaran, serta metode analisis yang digunakan (Reid et al., 2005a). Rasio OC BC di Wiedinmyer et al. (2011) adalah tentang 10:1, dan jumlah total mereka adalah tentang setengah dari orang-orang dari PM10. Menurut IPCC (2007), emisi bahan bakar fosil global memperkirakan BC di hadir berkisar dari 5.8 Tg C 8.0 yr 1 (Haywood dan Boucher, 2000). Biomassa pembakaran (hutan dan savana pembakaran) memberikan kontribusi sekitar 40% dari total emisi BC. Bond et al. (2004) memperkirakan emisi global saat ini total BC 4,6 Tg C yr 1 dari bahan bakar fosil dan pembakaran biofuel dan 3.3 yr Tg C 1 dari pembakaran biomassa terbuka. Wiedinmyer et al. (2011) diperkirakan api global emisi BC Tg C 2.2 yr 1 untuk periode 2005-2010, yang sebanding dengan yang dari The Global api emisi Database (GFED) (Randerson et al, 2005; van der Werf et al., 2004, 2006, 2010). Salah satu sifat penting asap serta aerosol lainnya Troposfer adalah variabilitas spasial yang besar karena bersifat lokal dan regional kebakaran, singkat dalam Kejadian kebakaran individu, dan hidup singkat partikel setelah yang dipancarkan ke atmosfer. Pengukuran menunjukkan sejumlah besar secara dramatis wildland api emisi di Amazon dan Amerika Utara (misalnya, Radke, 1991; Ward dan Hardy, 1991; Liu, 2004) selama kebakaran individu atau musim yang terbakar, membuat asap faktor penting untuk radiasi anggaran di daerah ini. Biomassa pembakaran di daerah tropis adalah kepentingan tertentu karena sebagian besar dari hutan dan pertanian pembakaran. Emisi karbon dari kebakaran di daerah geografis yang besar atau ekoregion di Amerika Utara telah diperkirakan dalam banyak studi (e.g., Perancis et al., 2004, 2011; Heru et al., 2001; Kasischke dan Bruhwiler, 2002; Ito dan Penner, 2004; Hoelzemann et al., 2004; Liu, 2004; Liu et al., 2005a; Kasischke dan Johnstone, 2005; Wiedinmyer et al., 2006; Schultz et al., 2008; Reid et al., 2009; Van der Werf et al., 2010). Perkiraan dari van der Werf et al. (2010) adalah urutan 10 yr Tg C 1 untuk benua Amerika dan Meksiko dan 50 yr Tg C 1 untuk Kanada dan Alaska.
2.2. Dampak emisi asap pada atmosfer radiasi insiden
radiasi matahari yang mendorong sistem iklim bumi baik tercermin kembali ke ruang (30%) atau diserap oleh permukaan bumi dan suasana (70%). Memang ini radiasi yang diserap yang memanaskan planet dan suasana (dariwrong dan Feng, 2009). Anggaran keseluruhan energi untuk planet mencakup tidak hanya jumlah radiasi matahari diserap dan tercermin dari permukaan dan atmosfer bumi, tetapi juga dengan jumlah radiasi yang diserap kembali dipancarkan dari permukaan bumi dan atmosfer sebagai gelombang panjang radiasi. Gas rumah kaca dan aerosol dihasilkan dari wildland api dan dihasilkan di atmosfer melalui reaksi kimia melibatkan kimia pendahulu yang dipancarkan dari kebakaran tersebut mempengaruhi keseimbangan energi keseluruhan bumi (dan dengan demikian suhu) karena mereka juga menyerap dan mencerminkan radiasi panjang gelombang dan matahari, awan dengan peran partikel asap sebagai CCNs. Perubahan radiasi dan awan lebih lanjut dapat mempengaruhi kondisi energi dan air untuk sistem tanah-vegetasi.
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
Black carbon is a product of incomplete combustion, which together with organic carbon constitutes the majority of particulate carbon. Approximately 5–10% of fire smoke particles are BC, as compared to about 50–60% for OC, and the variations can be due to different fuel types and combustion conditions, as well as the analytical methods used (Reid et al., 2005a). The OC/BC ratios in Wiedinmyer et al. (2011) were about 10:1, and their total amounts were about half of those of PM10. According to IPCC (2007), global fossil fuel emission estimates of BC at present range from 5.8 to 8.0 Tg C yr1 (Haywood and Boucher, 2000). Biomass burning (forest and savanna burning) contributes about 40% of total BC emissions. Bond et al. (2004) estimated the total current global emission of BC to be 4.6 Tg C yr1 from fossil fuel and biofuel combustion and 3.3 Tg C yr1 from open biomass burning. Wiedinmyer et al. (2011) estimated the global fire BC emission of 2.2 Tg C yr1 for the period of 2005–2010, which is comparable to that from The Global Fire Emissions Database (GFED) (Randerson et al., 2005; van der Werf et al., 2004, 2006, 2010). One of the important properties of smoke as well as other tropospheric aerosols is its large spatial variability due to the local and regional origination of fires, short periods of individual fire events, and short lifetime of particles after being emitted into the atmosphere. Measurements have shown dramatically large amounts of wildland fire emission in the Amazon and North America (e.g., Radke, 1991; Ward and Hardy, 1991; Liu, 2004) during individual fires or a burning season, making smoke an important factor to radiation budget in these regions. Biomass burning in the tropics is of particular interest because of the large extent of forest clearing and agricultural burning. Carbon emission from fires in the major geographical regions or ecoregions in North America have been estimated in many studies (e.g., French et al., 2004, 2011; Amiro et al., 2001; Kasischke and Bruhwiler, 2002; Ito and Penner, 2004; Hoelzemann et al., 2004; Liu, 2004; Liu et al., 2005a; Kasischke and Johnstone, 2005; Wiedinmyer et al., 2006; Schultz et al., 2008; Reid et al., 2009; van der Werf et al., 2010). The estimates from van der Werf et al. (2010) are on the order of 10 Tg C yr1 for the continental US and Mexico and 50 Tg C yr1 for Canada and Alaska.
2.2. Impacts of smoke emissions on atmospheric radiation Incident
solar radiation that drives the earth’s climate system is either reflected back to space (30%) or absorbed by the earth’s surface and atmosphere (70%). It is this absorbed radiation that heats the planet and atmosphere (Ramanathan and Feng, 2009). The overall energy budget for the planet includes not only the amount of solar radiation absorbed and reflected by the earth’s surface and atmosphere, but also the amount of absorbed radiation re-emitted from the earth’s surface and atmosphere as long wave radiation. Greenhouse gases and aerosols produced from wildland fires and generated in the atmosphere through chemical reactions involving precursor chemicals emitted from those fires affect the earth’s overall energy balance (and thus temperature) because they also absorb and reflect long-wave and solar radiation, clouds with the roles of smoke particles as CCNs. The changes in radiation and clouds can further affect energy and water conditions for the soil-vegetation system.
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: