Woodburn [24] coordinated the ideas of 20 scientists and educators in  translation - Woodburn [24] coordinated the ideas of 20 scientists and educators in  Indonesian how to say

Woodburn [24] coordinated the ideas

Woodburn [24] coordinated the ideas of 20 scientists and educators in constructing
an examination of the methods and procedures of science. According to Woodburn, one
28 item section of the test deals with the meanings of words used in the pursuit of science
(e.g., problem, hypothesis, assumption, experiment, and observation.) The second section
of six items attempted to measure students’ ability to recognize the general design of an
experiment and the third section of 16 items dealt with drawing conclusions from experiments.
Most of these latter items were based on phenomena from the life sciences.
Several standardized sets of student response keys were provided for the many items in
this instrument. As the keys themselves are wordy, and unfamiliar to students, this could
influence the validity of the exam. Woodburn stated that this exam could be used at both
the junior and senior high school with about a 50% difficulty level at the ninth grade level.
From their pilot studies, they found that average students could complete the exam in
40 minutes. Users of the exam were encouraged to share with Woodburn their comments
to improve this exam and stimulate the development of instruments which will assess
student achievement of “additional elements of thinking and behavior likely to be involved
in the pursuit of science.” The exam is available in the ERIC Handbook edited by
Mayer[ 121.
An ability related to some facets of science processes is that ability classified as “critical
thinking.” As many different descriptions exist, Poe1[25] developed the following definition
of “critical thinking:”
(1) Identify and define problems.
(2) Select and gather pertinent evidence needed to solve the problem.
(3) Recognize assumptions.
(4) Formulate relevant and promising hypotheses.
(5) Interpret data and to interpolate and extrapolate from these data.
(6) Test hypotheses and to draw valid conclusions and inferences from the hypotheses.
He specified that these skills should not be viewed as a linear sequence of steps to be
followed, but that they are used in activities that involve problem solving and critical
thinking. Poel developed a test which assessed those critical thinking abilities within
physical science situations. The 48 item multiple choice test was validated by a series
of revisions, field testing, and analyses by judges. From test-retest administration, it was
calculated to have a stability coefficient of 0.77. Correlations with the Watson-Gfaser
Criticaf Thinking Appraisal (WGCTA) [26] ranged from 0.55 to 0.61, indicating that
Poel’s test is significantly related to the WGCTA (as was expected) but was not identical
(again expected). Poel concluded that his instrument was a “sufficiently reliable, valid
instrument that can be used conveniently for measuring the development of criticalthinking
skills in physics.”
In the early 1960’s Kastrinos developed a critical thinking test[27] appropriate for
high school students in advanced biology. It contained the following areas: reading
comprehension, interpretation of data, assumptions, and problem solving. A reliability

coefficient of 0.7 1 was obtained with a sample of 50 high school students. In this study,
Kastrinos compared scores from his test with scores from IQ tests, reading tests,
standardized biology tests, the WGCTA, and Novak’s Problem Solving Test[28]. Many
detailed results and conclusions were presented in his paper, generally suggesting that
critical thinking is not one dimensional but a complex, multidimensional field with many
components. Kastrinos also recommended that separate tests be developed for different
aptitude groups. The Kastrinos Critical Thinking Test contains eight items testing reading
comprehension, 20 assessing interpretation of data, six items measuring assumptions,
and eight items testing problem-solving ability.
Discussion
While measurement of science process skills is a relatively young endeavor, there are
a considerable number of techniques described in the literature. A large number have
been developed for use at the elementary school level, most related specifically to the
SAPA program objectives. Many of these techniques involve actual student behavior
or pictorial representation, so reading ability is not a confounding variable. At the secondary
level, the paper-and-pencil testing format predominates, with some of the instruments
assessing knowledge of or understanding of these processes and others attending
to actual performance of the process skills. It appears that investigators can begin to
replicate and crossvalidate the research accomplished so far. This is a very healthy research
situation and one that deserves the attention of the science education communitY.

0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
Woodburn [24] coordinated the ideas of 20 scientists and educators in constructingan examination of the methods and procedures of science. According to Woodburn, one28 item section of the test deals with the meanings of words used in the pursuit of science(e.g., problem, hypothesis, assumption, experiment, and observation.) The second sectionof six items attempted to measure students’ ability to recognize the general design of anexperiment and the third section of 16 items dealt with drawing conclusions from experiments.Most of these latter items were based on phenomena from the life sciences.Several standardized sets of student response keys were provided for the many items inthis instrument. As the keys themselves are wordy, and unfamiliar to students, this couldinfluence the validity of the exam. Woodburn stated that this exam could be used at boththe junior and senior high school with about a 50% difficulty level at the ninth grade level.From their pilot studies, they found that average students could complete the exam in40 minutes. Users of the exam were encouraged to share with Woodburn their commentsto improve this exam and stimulate the development of instruments which will assessstudent achievement of “additional elements of thinking and behavior likely to be involvedin the pursuit of science.” The exam is available in the ERIC Handbook edited byMayer[ 121.An ability related to some facets of science processes is that ability classified as “criticalthinking.” As many different descriptions exist, Poe1[25] developed the following definitionof “critical thinking:”(1) Identify and define problems.(2) Select and gather pertinent evidence needed to solve the problem.(3) Recognize assumptions.(4) Formulate relevant and promising hypotheses.(5) Interpret data and to interpolate and extrapolate from these data.(6) Test hypotheses and to draw valid conclusions and inferences from the hypotheses.He specified that these skills should not be viewed as a linear sequence of steps to befollowed, but that they are used in activities that involve problem solving and criticalthinking. Poel developed a test which assessed those critical thinking abilities withinphysical science situations. The 48 item multiple choice test was validated by a seriesof revisions, field testing, and analyses by judges. From test-retest administration, it wascalculated to have a stability coefficient of 0.77. Correlations with the Watson-GfaserCriticaf Thinking Appraisal (WGCTA) [26] ranged from 0.55 to 0.61, indicating thatPoel’s test is significantly related to the WGCTA (as was expected) but was not identical(again expected). Poel concluded that his instrument was a “sufficiently reliable, validinstrument that can be used conveniently for measuring the development of criticalthinkingskills in physics.”In the early 1960’s Kastrinos developed a critical thinking test[27] appropriate forhigh school students in advanced biology. It contained the following areas: readingcomprehension, interpretation of data, assumptions, and problem solving. A reliabilitycoefficient of 0.7 1 was obtained with a sample of 50 high school students. In this study,Kastrinos compared scores from his test with scores from IQ tests, reading tests,standardized biology tests, the WGCTA, and Novak’s Problem Solving Test[28]. Manydetailed results and conclusions were presented in his paper, generally suggesting thatcritical thinking is not one dimensional but a complex, multidimensional field with manycomponents. Kastrinos also recommended that separate tests be developed for differentaptitude groups. The Kastrinos Critical Thinking Test contains eight items testing readingcomprehension, 20 assessing interpretation of data, six items measuring assumptions,and eight items testing problem-solving ability.DiscussionWhile measurement of science process skills is a relatively young endeavor, there area considerable number of techniques described in the literature. A large number havebeen developed for use at the elementary school level, most related specifically to theSAPA program objectives. Many of these techniques involve actual student behavioror pictorial representation, so reading ability is not a confounding variable. At the secondarylevel, the paper-and-pencil testing format predominates, with some of the instrumentsassessing knowledge of or understanding of these processes and others attendingto actual performance of the process skills. It appears that investigators can begin toreplicate and crossvalidate the research accomplished so far. This is a very healthy researchsituation and one that deserves the attention of the science education communitY.
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
Woodburn [24] dikoordinasikan ide-ide dari 20 ilmuwan dan pendidik dalam membangun
pemeriksaan metode dan prosedur ilmu. Menurut Woodburn, salah satu
bagian 28 item penawaran tes dengan makna kata-kata yang digunakan dalam mengejar ilmu
(misalnya, masalah, hipotesis, asumsi, percobaan, dan pengamatan.) Bagian kedua
dari enam item berusaha untuk mengukur kemampuan siswa untuk mengenali desain umum dari suatu
eksperimen dan bagian ketiga dari 16 item ditangani dengan menarik kesimpulan dari percobaan.
Sebagian besar item yang terakhir didasarkan pada fenomena dari ilmu-ilmu kehidupan.
Beberapa set standar kunci respon siswa disediakan untuk banyak item di
instrumen ini. Sebagai kunci sendiri bertele-tele, dan asing bagi siswa, ini bisa
mempengaruhi keabsahan ujian. Woodburn menyatakan bahwa ujian ini dapat digunakan di kedua
sekolah SMP dan SMA dengan sekitar tingkat kesulitan 50% di tingkat kelas sembilan.
Dari studi pilot mereka, mereka menemukan bahwa rata-rata siswa bisa menyelesaikan ujian di
40 menit. Pengguna ujian didorong untuk berbagi dengan Woodburn komentar mereka
untuk meningkatkan ujian ini dan merangsang pengembangan instrumen yang akan menilai
prestasi siswa dari "elemen tambahan pemikiran dan perilaku mungkin terlibat
dalam mengejar ilmu." Ujian tersedia dalam ERIC Handbook diedit oleh
Mayer [121.
"kritis Kemampuan terkait dengan beberapa aspek dari proses ilmu pengetahuan adalah bahwa kemampuan diklasifikasikan
sebagai. berpikir" Seperti banyak deskripsi yang berbeda ada, Poe1 [25] dikembangkan definisi berikut
dari "berpikir kritis:"
( 1) Mengidentifikasi dan mendefinisikan masalah.
(2) Pilih dan mengumpulkan bukti terkait yang diperlukan untuk memecahkan masalah.
(3) Kenali asumsi.
(4) Merumuskan hipotesis yang relevan dan menjanjikan.
(5) Menafsirkan data dan untuk interpolasi dan ekstrapolasi dari data tersebut.
(6) Uji hipotesis dan untuk menarik kesimpulan yang valid dan kesimpulan dari hipotesis.
Dia ditetapkan bahwa keterampilan ini tidak harus dilihat sebagai urutan linear langkah yang harus
diikuti, tetapi mereka digunakan dalam kegiatan yang melibatkan pemecahan masalah dan kritis
berpikir. Poel mengembangkan tes yang menilai kemampuan mereka berpikir kritis dalam
situasi ilmu fisika. 48 soal tes pilihan ganda divalidasi oleh serangkaian
revisi, uji lapangan, dan analisis oleh hakim. Dari administrasi tes-tes ulang, itu
dihitung untuk memiliki koefisien stabilitas 0,77. Korelasi dengan Watson-Gfaser
Criticaf Berpikir Appraisal (WGCTA) [26] berkisar 0,55-0,61, menunjukkan bahwa
tes Poel ini secara signifikan berhubungan dengan WGCTA (seperti yang diharapkan) tapi tidak identik
(lagi diharapkan). Poel menyimpulkan bahwa alat musiknya adalah "cukup handal, valid
instrumen yang dapat digunakan dengan mudah untuk mengukur perkembangan criticalthinking
keterampilan dalam fisika."
Pada awal 1960-an Kastrinos mengembangkan tes berpikir kritis [27] sesuai untuk
siswa SMA dalam biologi canggih . Isinya bidang berikut: membaca
pemahaman, interpretasi data, asumsi, dan pemecahan masalah. Sebuah reliabilitas koefisien 0,7 1 diperoleh dengan sampel 50 siswa SMA. Dalam studi ini, Kastrinos dibandingkan skor dari tes dengan skor dari tes IQ, tes membaca, tes biologi standar, WGCTA, dan Masalah Novak Pemecahan Uji [28]. Banyak hasil rinci dan kesimpulan disajikan dalam makalahnya, umumnya menunjukkan bahwa berpikir kritis tidak satu dimensi, tetapi kompleks, bidang multidimensi dengan banyak komponen. Kastrinos juga merekomendasikan bahwa tes terpisah dikembangkan untuk berbagai kelompok bakat. The Kastrinos Berpikir Kritis Uji berisi delapan item pengujian membaca pemahaman, 20 menilai interpretasi data, enam item mengukur asumsi, dan delapan item pengujian kemampuan memecahkan masalah. Diskusi Sementara pengukuran keterampilan proses sains adalah usaha yang relatif muda, ada sejumlah besar teknik dijelaskan dalam literatur. Sejumlah besar telah dikembangkan untuk digunakan di tingkat sekolah dasar, yang paling khusus berkaitan dengan tujuan program SAPA. Banyak dari teknik ini melibatkan perilaku siswa yang sebenarnya atau representasi bergambar, sehingga kemampuan membaca bukanlah variabel pengganggu. Pada sekunder tingkat, format pengujian kertas dan pensil mendominasi, dengan beberapa instrumen menilai pengetahuan atau pemahaman tentang proses-proses dan lain-lain menghadiri kinerja aktual dari keterampilan proses. Tampaknya peneliti dapat mulai meniru dan crossvalidate penelitian dicapai sejauh ini. Ini adalah penelitian yang sangat sehat situasi dan salah satu yang perlu diperhatikan oleh masyarakat pendidikan sains.






















Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: