Results (
Indonesian) 1:
[Copy]Copied!
menunjukkan bahwa bias metode umum tidak menjelaskan hubungan antara studi konstruksi. CFA output yang digunakan untuk menghitung komposit kehandalan (minimal 0.77) dan rata-rata varians diekstrak (minimal 0,53) untuk membangun masing-masing. Validitas diskriminan dinilai dalam dua cara. Pertama, kami menggunakan tes perbedaan χ2 untuk setiap pasangan mungkin konstruksi, memaksa setiap pasangan konstruksi yang cocok dengan model satu-faktor dan membandingkan yang cocok dengan model dua faktor (Anderson dan Gerbing, 1988). Bahkan akuntansi untuk sejumlah besar χ2 tes dilakukan (Lihat Vorhees et al., 2016), model dua faktor selalu disediakan yang lebih cocok dengan data dari model tunggal-faktor. Kedua, kita dibandingkan rata-rata varians diekstrak (AVEs) dengan korelasi kuadrat dari matriks PHI standar. AVE terendah 0,53 (dinamika pasar) dan kuadrat terbesar korelasi antara konstruksi setiap dua 0,21, menunjukkan baik diskriminan validitas (Fornell dan Larcker, 1981).Model strukturalTahap kedua dari analisis terlibat menjalankan model struktural dengan variabel instrumental. Pendekatan kami di sini mengikuti rekomendasi Venkatraman (1989) dalam menganalisis hubungan cocok sebagai moderasi. Secara khusus, kita menjauhkan diri analisis sub kelompok atau split sampel pendekatan mendukung model persamaan struktural dikelola karena hasil kinerja ditentukan oleh interaksi antara peramal dan moderator (Sharma et al., 1981; Venkatraman, 1989).We mean-centered the raw scores of antecedent variables to reduce potential problems of multicollinearity linked to the inclusion of the interaction terms (Aiken and West, 1991) required for the assessment of moderating effects. Three interaction terms were created by the products of spontaneity with: strategic planning; centralization, and; market dynamism. In addition, the latter moderating variables were also inserted into the structural equations as main effects following statistical convention for hierarchical testing of interaction effects (Sharma et al., 1981). In line with Germann et al. (2013), we also computed quadratic terms (both for the main effect of spontaneity and for the moderating effects), and included them in the model to control for potential non-linear effects. We used Ping’s (1995) approach for estimating interactions between latent constructs in structural equation models. This procedure is recommended in order to lessen model complexity since our model comprised a number of interaction effects ( Jaccard and Wan, 1996). Single indicants were therefore computed for all multi-item latent variables (except for export profit effectiveness) by averaging the corresponding measurement items. Export profit effectiveness was modeled as a first-order latent variable comprised of three items. We set the error variances of the single indicants associated with the latent variables to [(1–α).σ2] ( Jöreskog and Sörbom, 1993), where α corresponds to the construct reliability and σ to the standard deviation of the single indicant. Following established guidelines (Song et al., 2005) we used the factor loading and the error variance estimates obtained from the main effects model to compute loadings and error variances of the single indicants corresponding to the quadratic and interaction terms. We ran two models, a model where endogeneity is assumed not to exist and a model where endogeneity is presumed and controlled for. The χ2 difference between those two models was not statistically significant, suggesting that endogeneity is not a concern (Antonakis et al., 2010).In addition, we ran two models, namely, a constrained model and an unconstrained model. In the constrained model we allowed only the direct effects to be estimated freely. Accordingly, we set interaction terms at zero. In the unconstrained model
Being translated, please wait..
