Purpose: This study proposes the best clustering method(s) for differe translation - Purpose: This study proposes the best clustering method(s) for differe Indonesian how to say

Purpose: This study proposes the be

Purpose: This study proposes the best clustering method(s) for different distance
measures under two different conditions using the cophenetic correlation coefficient.
Methods: In the first one, the data has multivariate standard normal distribution
without outliers for n = 10, 50, 100 and the second one is with outliers (5%) for
n = 10, 50, 100. The proposed method is applied to simulated multivariate normal
data via MATLAB software.
Results: According the results of simulation the Average (especially for n = 10) and
Centroid (especially for n = 50 and n = 100) methods are recommended at both
conditions.
Conclusions: This study hopes to contribute to literature for making better decisions
on selection of appropriate cluster methods by using subgroup sizes, variable
numbers, subgroup means and variances.
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
Purpose: This study proposes the best clustering method(s) for different distancemeasures under two different conditions using the cophenetic correlation coefficient.Methods: In the first one, the data has multivariate standard normal distributionwithout outliers for n = 10, 50, 100 and the second one is with outliers (5%) forn = 10, 50, 100. The proposed method is applied to simulated multivariate normaldata via MATLAB software.Results: According the results of simulation the Average (especially for n = 10) andCentroid (especially for n = 50 and n = 100) methods are recommended at bothconditions.Conclusions: This study hopes to contribute to literature for making better decisionson selection of appropriate cluster methods by using subgroup sizes, variablenumbers, subgroup means and variances.
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
Tujuan: Penelitian ini mengusulkan metode pengelompokan terbaik (s) untuk jarak yang berbeda
langkah-langkah di bawah dua kondisi yang berbeda menggunakan koefisien korelasi kofenetik.
Metode: Dalam yang pertama, data memiliki multivariat distribusi normal standar
tanpa outlier untuk n = 10, 50, 100 dan yang kedua adalah dengan outlier (5%) untuk
n = 10, 50, 100. metode yang diusulkan diterapkan normal multivariat simulasi
data melalui software MATLAB.
hasil: Menurut hasil simulasi rata (terutama untuk n = 10) dan
Centroid (terutama untuk n = 50 dan n = 100) metode yang direkomendasikan pada kedua
kondisi.
Kesimpulan: penelitian ini berharap dapat memberikan kontribusi literatur untuk membuat keputusan yang lebih baik
pada pemilihan metode klaster yang tepat dengan menggunakan ukuran subkelompok, variabel
angka, subkelompok berarti dan varians.
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2024 I Love Translation. All reserved.

E-mail: