.3. Growth ratios between infected and asymptomatic treesTo quantify a translation - .3. Growth ratios between infected and asymptomatic treesTo quantify a Indonesian how to say

.3. Growth ratios between infected

.3. Growth ratios between infected and asymptomatic trees
To quantify a potential growth loss in trees after infection by Armillaria and prior to mortality, growth ratios were calculated for each asymptomatic and infected tree using annual increment in basal area, height and volume. Prior to any detrimental impact of Armillaria infection on tree growth, little differences in growth ratios were observed between the two groups of trees (Fig. 3). However, prior to mortality, infected trees recorded significant and systematic decline in basal area increment compared to asymptomatic trees (Fig. 3a). This decline in basal area increment ratio was observed from 1997 onward indicating greater basal area decrease in infected trees when comparing the ratio of the basal area growth for the period 1993–1997 to that of 1989–1992. On average, the basal area increment growth ratio of the infected trees was on average 19.0% less than that of the asymptomatic trees from 1997 to 2003. In contrast to basal area, no significant differences were observed in the height increment ratios between asymptomatic and infected trees (Fig. 3b). Similar to basal area, a significant and systematic decline in volume increment growth ratios of infected trees compared to asymptomatic trees was observed from 1997 onward (Fig. 3c). The volume increment growth ratio of infected trees was on average 23.1% less than that of the asymptomatic trees from 1997 to 2003. Volume ratios were also significantly less in infected trees in years 1988 and 1989
(Fig. 3c).
3.4. Cumulative growth between infected and asymptomatic trees
The logistic regressions used to model basal area cumulative increment of both infected and asymptomatic trees were highly significant (p < 0.001) with respective R-square values of 0.71 and 0.68 (Fig. 4a). Of the three parameters of logistic regression (maximum growth rate, maximum cumulative growth, and time at which maximum growth rate was reached), growth rate and maximum cumulative growth did not differ significantly (p > 0.05) between asymptomatic and infected trees (Table 2). However the time at which maximum growth rate was reached was significantly different, and occurred 10–18 years earlier in infected trees than in asymptomatic trees (Table 2). Regression of cumulative height increment yielded a model that explained most of the variation in both asymptomatic (R2 = 0.92, p < 0.001) and infected (R2 = 0.94, p < 0.001) trees (Fig. 4b) indicating that height growth was much less variable among trees than basal area or volume growth (Fig. 4a). All three height growth parameters differed significantly between asymptomatic and infected trees (Table 2). The maximum cumulative height of asymptomatic trees was
1.16 m higher than infected trees, and the maximum growth rate of asymptomatic trees was higher than that of infected trees. The infected trees however reached their maximum growth rate 8 years earlier than the asymptomatic trees. Regressions of cumulative volume increment (Fig. 4c) were also highly significant for both asymptomatic (R2 = 0.66, p < 0.001) and infected (R2 = 0.66, p < 0.001) trees. The maximum cumulative volume did not differ between the two groups. Maximum growth rate did significantly differ, with asymptomatic trees having a higher growth rate than the infected trees. The time at which maximum growth was reached was significantly different between the two groups, as infected trees reached half of their maximum volume 11.6 years earlier than the asymptomatic trees (Table 2).
4. Discussion
4.1. Black spruce mortality
Mean mortality date between the DMPF and PPF differed by 3 years; black spruce having an average longevity between 96 and 99 years. Given that Armillaria usually kills mature trees in 10–20 years (Mallett, 1992; Morrison and Mallet, 1996), it is likely that that infection in both regions may have occurred at roughly 80 years of age. Given the potential error in accurately determining the origin date of black spruce trees associated with the difficulty of sampling between the root collar and height of the first year seedling (DesRochers and Gagnon, 1997), as well as the error resulting from determining mortality date using samples from DBH, we assume that the observed differences in longevity among black spruce trees between regions were not biologically meaningful.
In both regions, all 12 upland black spruce stands studied were even-aged, with the exception of one stand in the PPF having remnant trees which likely survived previous fires. All stands presumably originated from stand- replacing fires corresponding to a decade of severe drought and fire (1885–1894) in the DMPF (Tardif, 2004). The apparent synchronicity of the onset of infection/ mortality in black spruce trees across the 12 stands from both regions confirmed our first hypothesis. Armillaria is considered a ‘disease of the site’, as established mycelia are essentially permanent (Hagle, 2006).
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
.3. Growth ratios between infected and asymptomatic treesTo quantify a potential growth loss in trees after infection by Armillaria and prior to mortality, growth ratios were calculated for each asymptomatic and infected tree using annual increment in basal area, height and volume. Prior to any detrimental impact of Armillaria infection on tree growth, little differences in growth ratios were observed between the two groups of trees (Fig. 3). However, prior to mortality, infected trees recorded significant and systematic decline in basal area increment compared to asymptomatic trees (Fig. 3a). This decline in basal area increment ratio was observed from 1997 onward indicating greater basal area decrease in infected trees when comparing the ratio of the basal area growth for the period 1993–1997 to that of 1989–1992. On average, the basal area increment growth ratio of the infected trees was on average 19.0% less than that of the asymptomatic trees from 1997 to 2003. In contrast to basal area, no significant differences were observed in the height increment ratios between asymptomatic and infected trees (Fig. 3b). Similar to basal area, a significant and systematic decline in volume increment growth ratios of infected trees compared to asymptomatic trees was observed from 1997 onward (Fig. 3c). The volume increment growth ratio of infected trees was on average 23.1% less than that of the asymptomatic trees from 1997 to 2003. Volume ratios were also significantly less in infected trees in years 1988 and 1989(Fig. 3c).3.4. Cumulative growth between infected and asymptomatic treesThe logistic regressions used to model basal area cumulative increment of both infected and asymptomatic trees were highly significant (p < 0.001) with respective R-square values of 0.71 and 0.68 (Fig. 4a). Of the three parameters of logistic regression (maximum growth rate, maximum cumulative growth, and time at which maximum growth rate was reached), growth rate and maximum cumulative growth did not differ significantly (p > 0.05) between asymptomatic and infected trees (Table 2). However the time at which maximum growth rate was reached was significantly different, and occurred 10–18 years earlier in infected trees than in asymptomatic trees (Table 2). Regression of cumulative height increment yielded a model that explained most of the variation in both asymptomatic (R2 = 0.92, p < 0.001) and infected (R2 = 0.94, p < 0.001) trees (Fig. 4b) indicating that height growth was much less variable among trees than basal area or volume growth (Fig. 4a). All three height growth parameters differed significantly between asymptomatic and infected trees (Table 2). The maximum cumulative height of asymptomatic trees was1.16 m higher than infected trees, and the maximum growth rate of asymptomatic trees was higher than that of infected trees. The infected trees however reached their maximum growth rate 8 years earlier than the asymptomatic trees. Regressions of cumulative volume increment (Fig. 4c) were also highly significant for both asymptomatic (R2 = 0.66, p < 0.001) and infected (R2 = 0.66, p < 0.001) trees. The maximum cumulative volume did not differ between the two groups. Maximum growth rate did significantly differ, with asymptomatic trees having a higher growth rate than the infected trees. The time at which maximum growth was reached was significantly different between the two groups, as infected trees reached half of their maximum volume 11.6 years earlier than the asymptomatic trees (Table 2).4. Discussion
4.1. Black spruce mortality
Mean mortality date between the DMPF and PPF differed by 3 years; black spruce having an average longevity between 96 and 99 years. Given that Armillaria usually kills mature trees in 10–20 years (Mallett, 1992; Morrison and Mallet, 1996), it is likely that that infection in both regions may have occurred at roughly 80 years of age. Given the potential error in accurately determining the origin date of black spruce trees associated with the difficulty of sampling between the root collar and height of the first year seedling (DesRochers and Gagnon, 1997), as well as the error resulting from determining mortality date using samples from DBH, we assume that the observed differences in longevity among black spruce trees between regions were not biologically meaningful.
In both regions, all 12 upland black spruce stands studied were even-aged, with the exception of one stand in the PPF having remnant trees which likely survived previous fires. All stands presumably originated from stand- replacing fires corresponding to a decade of severe drought and fire (1885–1894) in the DMPF (Tardif, 2004). The apparent synchronicity of the onset of infection/ mortality in black spruce trees across the 12 stands from both regions confirmed our first hypothesis. Armillaria is considered a ‘disease of the site’, as established mycelia are essentially permanent (Hagle, 2006).
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
0,3. Rasio pertumbuhan antara pohon-pohon yang terinfeksi dan tanpa gejala
Untuk mengukur kerugian potensi pertumbuhan di pohon setelah infeksi oleh Armillaria dan sebelum kematian, rasio pertumbuhan dihitung untuk setiap pohon tanpa gejala dan terinfeksi menggunakan kenaikan tahunan di daerah basal, tinggi dan volume. Sebelum dampak merugikan dari infeksi Armillaria pada pertumbuhan pohon, perbedaan kecil dalam rasio pertumbuhan yang diamati antara dua kelompok pohon (Gambar. 3). Namun, sebelum kematian, pohon terinfeksi mencatat penurunan yang signifikan dan sistematis dalam peningkatan basal area dibandingkan dengan pohon tanpa gejala (Gambar. 3a). Penurunan rasio penambahan daerah basal diamati dari tahun 1997 dan seterusnya menunjukkan daerah penurunan basal yang lebih besar di pohon terinfeksi ketika membandingkan rasio pertumbuhan daerah basal untuk periode 1993-1997 dengan yang 1989-1992. Rata-rata, daerah basal rasio pertumbuhan kenaikan pohon-pohon yang terinfeksi itu rata-rata 19,0% kurang dari pohon tanpa gejala dari tahun 1997 sampai 2003. Berbeda dengan daerah basal, tidak ada perbedaan signifikan yang diamati dalam rasio pertambahan tinggi badan antara asimtomatik dan terinfeksi pohon (Gambar. 3b). Mirip dengan daerah basal, penurunan yang signifikan dan sistematis dalam volume rasio pertumbuhan kenaikan pohon yang terinfeksi dibandingkan dengan pohon tanpa gejala diamati dari tahun 1997 dan seterusnya (Gambar. 3c). Volume rasio pertumbuhan riap pohon yang terinfeksi adalah rata-rata 23,1% kurang dari pohon tanpa gejala dari 1997 ke 2003. rasio Volume juga secara signifikan kurang pohon yang terinfeksi di tahun 1988 dan 1989
(Gambar. 3c).
3.4. Pertumbuhan kumulatif antara pohon-pohon yang terinfeksi dan tanpa gejala
regresi The logistik digunakan untuk model daerah basal kenaikan kumulatif dari kedua pohon yang terinfeksi dan menunjukkan gejala yang sangat signifikan (p <0,001) dengan nilai R-square masing-masing 0,71 dan 0,68 (Gambar. 4a). Dari tiga parameter dari regresi logistik (tingkat pertumbuhan maksimum, pertumbuhan kumulatif maksimal, dan waktu di mana laju pertumbuhan maksimum tercapai), tingkat pertumbuhan dan pertumbuhan kumulatif maksimum tidak berbeda secara signifikan (p> 0,05) antara pohon-pohon tanpa gejala dan terinfeksi (Tabel 2 ). Namun saat di mana laju pertumbuhan maksimum dicapai berbeda secara signifikan, dan terjadi 10-18 tahun sebelumnya di pohon-pohon yang terinfeksi daripada di pohon tanpa gejala (Tabel 2). Regresi selisih tinggi kumulatif menghasilkan model yang menjelaskan sebagian besar variasi dalam kedua asimtomatik (R2 = 0.92, p <0,001) dan terinfeksi (R2 = 0.94, p <0,001) pohon (Gambar. 4b) menunjukkan bahwa pertumbuhan tinggi badan jauh lebih sedikit variabel antara pohon-pohon dari daerah basal atau pertumbuhan volume (Gambar. 4a). Ketiga parameter pertumbuhan tinggi berbeda secara signifikan antara pohon-pohon tanpa gejala dan terinfeksi (Tabel 2). Ketinggian kumulatif maksimum pohon tanpa gejala adalah
1,16 m lebih tinggi dari pohon yang terinfeksi, dan tingkat pertumbuhan maksimum pohon tanpa gejala adalah lebih tinggi dari pohon yang terinfeksi. Pohon-pohon yang terinfeksi namun mencapai tingkat pertumbuhan maksimal 8 tahun lebih awal dari pohon-pohon tanpa gejala. Regresi selisih volume yang kumulatif (Gambar. 4c) juga sangat signifikan untuk kedua asimtomatik (R2 = 0.66, p <0,001) dan terinfeksi (R2 = 0.66, p <0,001) pohon. Volume kumulatif maksimum tidak berbeda antara kedua kelompok. Tingkat pertumbuhan maksimum tidak secara signifikan berbeda, dengan pohon-pohon tanpa gejala memiliki tingkat pertumbuhan yang lebih tinggi daripada pohon-pohon yang terinfeksi. Waktu di mana pertumbuhan maksimum dicapai secara signifikan berbeda antara kedua kelompok, seperti pohon yang terinfeksi mencapai setengah dari volume maksimum mereka 11,6 tahun lebih awal dari pohon tanpa gejala (Tabel 2).
4. Diskusi
4.1. Kematian cemara hitam
Berarti tanggal kematian antara DMPF dan PPF berbeda dengan 3 tahun; cemara hitam memiliki umur panjang rata-rata antara 96 dan 99 tahun. Mengingat bahwa Armillaria biasanya membunuh pohon-pohon di 10-20 tahun (Mallett, 1992; Morrison dan Mallet, 1996), ada kemungkinan bahwa bahwa infeksi di kedua daerah mungkin telah terjadi pada sekitar 80 tahun. Mengingat potensi kesalahan dalam akurat menentukan tanggal asal pohon cemara hitam terkait dengan sulitnya pengambilan sampel antara kerah akar dan tinggi bibit tahun pertama (DesRochers dan Gagnon, 1997), serta kesalahan yang dihasilkan dari menentukan tanggal kematian menggunakan sampel dari DBH, kita mengasumsikan bahwa perbedaan yang diamati dalam umur panjang antara pohon-pohon cemara hitam antara daerah tidak bermakna biologis.
di kedua daerah, ke-12 dataran tinggi berdiri cemara hitam dipelajari bahkan usia, dengan pengecualian satu berdiri di PPF memiliki sisa pohon yang kemungkinan selamat kebakaran sebelumnya. Semua berdiri mungkin berasal dari siaga mengganti kebakaran sesuai dengan satu dekade kekeringan parah dan api (1885-1894) di DMPF (Tardif, 2004). Sinkronisitas jelas dari awal infeksi / kematian pada pohon cemara hitam di 12 stand dari kedua wilayah mengkonfirmasi hipotesis pertama kami. Armillaria dianggap sebagai 'penyakit situs', sebagai miselia didirikan pada dasarnya tetap (hagle, 2006).
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: