available for the application modeling. As a result, the abstractappli translation - available for the application modeling. As a result, the abstractappli Indonesian how to say

available for the application model

available for the application modeling. As a result, the abstract
application models and technology specific models can converge
into the same design artifact. Since the models are processed by a
DSL engine, it is possible to inform the DSL engine of how to
invoke the executable model solvers or the simulation tools from
within the design. The coupling between DSL and technology
features however, raises the challenge of making the DSL
extensible to incorporate changes as the technologies evolve.
Building concrete architecture models. A concrete model is
derived from the technology specific model reflecting architecture
design options. Design options have dependencies on the
configuration settings of the infrastructure supplied by a
technology and application components. These different settings
(such as stateful vs. stateless components) affect the behavior of
the infrastructure [8], and their effects can be absorbed into
random variables with specified distributions. These settings are
modeled as properties, constraints or functions. Different input
values for these settings can be explored in “what-if” scenarios
for the concrete architecture models to predict quality attributes.
Calibrating models with profiles and benchmarks. The above
capabilities produce predictions for the designed system in the
form of a model with parameters relating to the specific
infrastructure technology. Some of the parameters represent
tunable features of the container’s configuration such as thread
pool size, but others reflect internal hidden implementation details
of the container, which may not be measurable directly. Therefore
the solution requires running benchmarks to estimate the values of
parameters. Since benchmark measures can be compared to model
predictions, we can solve the parameterized model and determine
the values of the missing parameters. This approach is equivalent
to how geoscientists estimate parameter values for their models.
Benchmark scenarios must be carefully designed to exercise the
key elements of a specific infrastructure (including software and
hardware capacities) involved in the system design. In a manner
compatible with our ideas in this paper, research efforts (such as
[10,11,16]) have already demonstrated the utility of MDD tools to
automate benchmark generation and measurement collection. The
raw data collected may be further filtered and aggregated before
input into the model. As this procedure may requires heuristic
inputs to guide the data characterization and the solution of the
model, it remains an intriguing question to determine the extent
that this procedure can be automated and integrated with
architecture design/analysis tool chains.
Quantifying prediction uncertainty. Individual model
predictions will almost never be correct, because so many factors
can introduce errors in the modeling process These include
measurement errors, infrastructure variability, assumptions on
application behavior, and so on. In science, well understood
methods for quantifying model prediction uncertainty exist[14].
These basically generate ensembles of parameter and model
variations for execution, analyzing model outputs to determine
key sources of uncertainty and developing strategies for
efficiently reducing uncertainty. Incorporating these methods and
tools in the architecture modeling tool chain is necessary to allow
architects to effectively understand and quantify the risks in their
designs. Early research experience [17] has been reported to scope
uncertainties in domain models akin to the intrinsic models in our
proposed analysis toolset (see Figure 2), namely Abstract
Application Model and Platform Independent Model. Since the
source of uncertainties may spread several models in the analysis
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
available for the application modeling. As a result, the abstractapplication models and technology specific models can convergeinto the same design artifact. Since the models are processed by aDSL engine, it is possible to inform the DSL engine of how toinvoke the executable model solvers or the simulation tools fromwithin the design. The coupling between DSL and technologyfeatures however, raises the challenge of making the DSLextensible to incorporate changes as the technologies evolve.Building concrete architecture models. A concrete model isderived from the technology specific model reflecting architecturedesign options. Design options have dependencies on theconfiguration settings of the infrastructure supplied by atechnology and application components. These different settings(such as stateful vs. stateless components) affect the behavior ofthe infrastructure [8], and their effects can be absorbed intorandom variables with specified distributions. These settings aremodeled as properties, constraints or functions. Different inputvalues for these settings can be explored in “what-if” scenariosfor the concrete architecture models to predict quality attributes.Calibrating models with profiles and benchmarks. The abovecapabilities produce predictions for the designed system in theform of a model with parameters relating to the specificinfrastructure technology. Some of the parameters representtunable features of the container’s configuration such as threadpool size, but others reflect internal hidden implementation detailsof the container, which may not be measurable directly. Thereforethe solution requires running benchmarks to estimate the values ofparameters. Since benchmark measures can be compared to modelpredictions, we can solve the parameterized model and determinethe values of the missing parameters. This approach is equivalentto how geoscientists estimate parameter values for their models.Benchmark scenarios must be carefully designed to exercise thekey elements of a specific infrastructure (including software andhardware capacities) involved in the system design. In a mannercompatible with our ideas in this paper, research efforts (such as[10,11,16]) have already demonstrated the utility of MDD tools toautomate benchmark generation and measurement collection. Theraw data collected may be further filtered and aggregated beforeinput into the model. As this procedure may requires heuristicinputs to guide the data characterization and the solution of themodel, it remains an intriguing question to determine the extentthat this procedure can be automated and integrated witharchitecture design/analysis tool chains.Quantifying prediction uncertainty. Individual modelpredictions will almost never be correct, because so many factorscan introduce errors in the modeling process These includemeasurement errors, infrastructure variability, assumptions onapplication behavior, and so on. In science, well understoodmethods for quantifying model prediction uncertainty exist[14].These basically generate ensembles of parameter and modelvariations for execution, analyzing model outputs to determinekey sources of uncertainty and developing strategies forefficiently reducing uncertainty. Incorporating these methods andtools in the architecture modeling tool chain is necessary to allowarchitects to effectively understand and quantify the risks in theirdesigns. Early research experience [17] has been reported to scopeuncertainties in domain models akin to the intrinsic models in ourproposed analysis toolset (see Figure 2), namely AbstractApplication Model and Platform Independent Model. Since thesource of uncertainties may spread several models in the analysis
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
tersedia untuk pemodelan aplikasi. Akibatnya, abstrak
model aplikasi dan model tertentu teknologi bisa menyatu
ke dalam artefak desain yang sama. Karena model diproses oleh
mesin DSL, adalah mungkin untuk menginformasikan mesin DSL bagaimana
memohon pemecah model dieksekusi atau alat simulasi dari
dalam desain. Kopling antara DSL dan teknologi
fitur Namun, menimbulkan tantangan membuat DSL
extensible untuk menggabungkan perubahan sebagai teknologi berkembang.
Membangun model arsitektur beton. Sebuah model beton
berasal dari model tertentu teknologi mencerminkan arsitektur
pilihan desain. Pilihan desain memiliki ketergantungan pada
pengaturan konfigurasi infrastruktur yang disediakan oleh
teknologi dan aplikasi komponen. Pengaturan ini berbeda
(seperti stateful vs komponen stateless) mempengaruhi perilaku
infrastruktur [8], dan efek mereka dapat diserap ke dalam
variabel acak dengan distribusi yang ditentukan. Pengaturan ini
dimodelkan sebagai properti, kendala atau fungsi. Input yang berbeda
nilai-nilai untuk pengaturan ini dapat dieksplorasi dalam "bagaimana jika" skenario
untuk model arsitektur beton untuk memprediksi atribut kualitas.
Mengkalibrasi model dengan profil dan tolok ukur. Di atas
kemampuan menghasilkan prediksi untuk sistem yang dirancang dalam
bentuk model dengan parameter yang berkaitan dengan spesifik
teknologi infrastruktur. Beberapa parameter merupakan
fitur merdu dari konfigurasi wadah ini seperti benang
ukuran kolam renang, tetapi yang lain mencerminkan tersembunyi rincian implementasi internal
dari wadah, yang mungkin tidak terukur secara langsung. Oleh karena itu
solusinya memerlukan menjalankan benchmark untuk memperkirakan nilai-nilai
parameter. Sejak langkah patokan dapat dibandingkan model
prediksi, kita dapat memecahkan model parameter dan menentukan
nilai-nilai parameter yang hilang. Pendekatan ini setara
dengan berapa geoscientists memperkirakan nilai parameter untuk model mereka.
Skenario benchmark harus dirancang dengan cermat untuk melaksanakan
elemen kunci dari infrastruktur tertentu (termasuk perangkat lunak dan
kapasitas hardware) yang terlibat dalam desain sistem. Dengan cara
yang kompatibel dengan ide-ide kami dalam makalah ini, upaya penelitian (seperti
[10,11,16]) sudah menunjukkan kegunaan alat MDD untuk
mengotomatisasi generasi patokan dan koleksi pengukuran. The
data mentah yang dikumpulkan selanjutnya dapat disaring dan dikumpulkan sebelum
masukan ke dalam model. Sebagai prosedur ini mungkin memerlukan heuristik
masukan untuk memandu karakterisasi data dan solusi dari
model, tetap merupakan pertanyaan yang menarik untuk menentukan sejauh
bahwa prosedur ini dapat otomatis dan terintegrasi dengan
rantai arsitektur desain / alat analisis.
Mengukur ketidakpastian prediksi. Model individu
prediksi akan hampir tidak pernah benar, karena begitu banyak faktor
dapat memperkenalkan kesalahan dalam proses pemodelan ini termasuk
kesalahan pengukuran, variabilitas infrastruktur, asumsi
perilaku aplikasi, dan sebagainya. Dalam ilmu, dipahami dengan baik
metode untuk mengukur ketidakpastian model prediksi yang ada [14].
Ini pada dasarnya menghasilkan ansambel dari parameter dan model
variasi untuk eksekusi, menganalisis Model output untuk menentukan
sumber utama ketidakpastian dan mengembangkan strategi untuk
mengurangi ketidakpastian efisien. Menggabungkan metode ini dan
alat-alat dalam rantai arsitektur alat pemodelan diperlukan untuk memungkinkan
arsitek untuk secara efektif memahami dan mengukur risiko dalam mereka
desain. Pengalaman Penelitian awal [17] telah dilaporkan lingkup
ketidakpastian dalam model domain mirip dengan model intrinsik dalam kami
toolset analisis yang diusulkan (lihat Gambar 2), yaitu Abstrak
Aplikasi Model dan Landasan Model Independen. Karena
sumber ketidakpastian dapat menyebar beberapa model dalam analisis
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: