2.4.3. Is there support for the generative drawing effect?Mean proport translation - 2.4.3. Is there support for the generative drawing effect?Mean proport Thai how to say

2.4.3. Is there support for the gen

2.4.3. Is there support for the generative drawing effect?
Mean proportion correct and SDs on the comprehension and
drawing posttests for both groups are presented in Table 2. Repeated
measures univariate analyses of variance (ANOVA) with the
comprehension pre- and post-test scores as the within-subject factors
and group (drawing versus control) as the between-subject factor
showed a main effect over time indicating that overall, participants
reached significant knowledge gains between the
comprehension pretest and the comprehension posttest, F(1,
46) = 98.97; p < .001; partial eta2 = .68. An interaction additionally
showed that these knowledge gains were significantly higher for
the drawing group than for the control group, F(1, 46) = 46.17;
p < .001; partial eta2 = .50.
For the drawing test, a repeated measures ANOVA was not possible,
since these items were only used in the posttest. In this case,
a univariate analysis of covariance (ANCOVA) predicting the drawing
test score with group (drawing versus control) as the factorial independent
variable and prior knowledge as a covariate showed that
the drawing group scored significantly better than the control group
on the drawing posttest, F(1, 45) = 13.49, p = .001, partial eta2 = .23.1
Cohen’s d favoring the drawing group over the control group was
0.85 for the comprehension posttest, and 1.15 for the drawing
posttest, all of which are considered large effects. Thus, there is strong
support for the generative drawing effect, as predicted.
Additionally, results revealed that the drawing group needed significantly
more learning time (M = 21.08 min., SD = 4.24) than the
control group (M = 17.38 min., SD = 3.33), F(1, 46) = 11.34, p = .002,
partial eta2 = .20. Thus, to test whether learning time mediates the
positive effect of drawing on text comprehension, additional mediation
analyses (Baron & Kenny, 1986) were calculated by including
learning time as an additional predictor in the aforementioned linear
model. A mediation effect would be detected if, in this case, effects
of drawing on text comprehension would significantly decrease.
Results of the mediation analyses showed that the effect of drawing
on both comprehension test scores and drawing test scores was not
fullymediated by learning time. That is, including learning time still
revealed the interaction between group (drawing versus control)
and time (pre- versus post) in that the drawing group had significantly
higher knowledge gains than the control group on the
comprehension test items (p < .001). Furthermore, the drawing group
also still outperformed the control group on the drawing posttest
after controlling for learning time (p = .009).
Furthermore, results revealed that students in the drawing group
rated their invested mental effort during learning significantly higher
(M = 5.04, SD = 1.12) than students in the control group (M = 3.96,
SD = 1.65), F(1, 46) = 7.05, p = .011, partial eta2 = .13. There was no
difference between the two groups on the perceived difficulty item
(drawing group: M = 4.08, SD = 1.50; control group: M = 4.25,
SD = 1.22; F < 1). Thus, consistent with predictions concerning the
generative drawing effect, there is partial support for the idea that
0/5000
From: -
To: -
Results (Thai) 1: [Copy]
Copied!
2.4.3. Is there support for the generative drawing effect?
Mean proportion correct and SDs on the comprehension and
drawing posttests for both groups are presented in Table 2. Repeated
measures univariate analyses of variance (ANOVA) with the
comprehension pre- and post-test scores as the within-subject factors
and group (drawing versus control) as the between-subject factor
showed a main effect over time indicating that overall, participants
reached significant knowledge gains between the
comprehension pretest and the comprehension posttest, F(1,
46) = 98.97; p < .001; partial eta2 = .68. An interaction additionally
showed that these knowledge gains were significantly higher for
the drawing group than for the control group, F(1, 46) = 46.17;
p < .001; partial eta2 = .50.
For the drawing test, a repeated measures ANOVA was not possible,
since these items were only used in the posttest. In this case,
a univariate analysis of covariance (ANCOVA) predicting the drawing
test score with group (drawing versus control) as the factorial independent
variable and prior knowledge as a covariate showed that
the drawing group scored significantly better than the control group
on the drawing posttest, F(1, 45) = 13.49, p = .001, partial eta2 = .23.1
Cohen’s d favoring the drawing group over the control group was
0.85 for the comprehension posttest, and 1.15 for the drawing
posttest, all of which are considered large effects. Thus, there is strong
support for the generative drawing effect, as predicted.
Additionally, results revealed that the drawing group needed significantly
more learning time (M = 21.08 min., SD = 4.24) than the
control group (M = 17.38 min., SD = 3.33), F(1, 46) = 11.34, p = .002,
partial eta2 = .20. Thus, to test whether learning time mediates the
positive effect of drawing on text comprehension, additional mediation
analyses (Baron & Kenny, 1986) were calculated by including
learning time as an additional predictor in the aforementioned linear
model. A mediation effect would be detected if, in this case, effects
of drawing on text comprehension would significantly decrease.
Results of the mediation analyses showed that the effect of drawing
on both comprehension test scores and drawing test scores was not
fullymediated by learning time. That is, including learning time still
revealed the interaction between group (drawing versus control)
and time (pre- versus post) in that the drawing group had significantly
higher knowledge gains than the control group on the
comprehension test items (p < .001). Furthermore, the drawing group
also still outperformed the control group on the drawing posttest
after controlling for learning time (p = .009).
Furthermore, results revealed that students in the drawing group
rated their invested mental effort during learning significantly higher
(M = 5.04, SD = 1.12) than students in the control group (M = 3.96,
SD = 1.65), F(1, 46) = 7.05, p = .011, partial eta2 = .13. There was no
difference between the two groups on the perceived difficulty item
(drawing group: M = 4.08, SD = 1.50; control group: M = 4.25,
SD = 1.22; F < 1). Thus, consistent with predictions concerning the
generative drawing effect, there is partial support for the idea that
Being translated, please wait..
Results (Thai) 2:[Copy]
Copied!
2.4.3. Is there support for the generative drawing effect?
Mean proportion correct and SDs on the comprehension and
drawing posttests for both groups are presented in Table 2. Repeated
measures univariate analyses of variance (ANOVA) with the
comprehension pre- and post-test scores as the within-subject factors
and group (drawing versus control) as the between-subject factor
showed a main effect over time indicating that overall, participants
reached significant knowledge gains between the
comprehension pretest and the comprehension posttest, F(1,
46) = 98.97; p < .001; partial eta2 = .68. An interaction additionally
showed that these knowledge gains were significantly higher for
the drawing group than for the control group, F(1, 46) = 46.17;
p < .001; partial eta2 = .50.
For the drawing test, a repeated measures ANOVA was not possible,
since these items were only used in the posttest. In this case,
a univariate analysis of covariance (ANCOVA) predicting the drawing
test score with group (drawing versus control) as the factorial independent
variable and prior knowledge as a covariate showed that
the drawing group scored significantly better than the control group
on the drawing posttest, F(1, 45) = 13.49, p = .001, partial eta2 = .23.1
Cohen’s d favoring the drawing group over the control group was
0.85 for the comprehension posttest, and 1.15 for the drawing
posttest, all of which are considered large effects. Thus, there is strong
support for the generative drawing effect, as predicted.
Additionally, results revealed that the drawing group needed significantly
more learning time (M = 21.08 min., SD = 4.24) than the
control group (M = 17.38 min., SD = 3.33), F(1, 46) = 11.34, p = .002,
partial eta2 = .20. Thus, to test whether learning time mediates the
positive effect of drawing on text comprehension, additional mediation
analyses (Baron & Kenny, 1986) were calculated by including
learning time as an additional predictor in the aforementioned linear
model. A mediation effect would be detected if, in this case, effects
of drawing on text comprehension would significantly decrease.
Results of the mediation analyses showed that the effect of drawing
on both comprehension test scores and drawing test scores was not
fullymediated by learning time. That is, including learning time still
revealed the interaction between group (drawing versus control)
and time (pre- versus post) in that the drawing group had significantly
higher knowledge gains than the control group on the
comprehension test items (p < .001). Furthermore, the drawing group
also still outperformed the control group on the drawing posttest
after controlling for learning time (p = .009).
Furthermore, results revealed that students in the drawing group
rated their invested mental effort during learning significantly higher
(M = 5.04, SD = 1.12) than students in the control group (M = 3.96,
SD = 1.65), F(1, 46) = 7.05, p = .011, partial eta2 = .13. There was no
difference between the two groups on the perceived difficulty item
(drawing group: M = 4.08, SD = 1.50; control group: M = 4.25,
SD = 1.22; F < 1). Thus, consistent with predictions concerning the
generative drawing effect, there is partial support for the idea that
Being translated, please wait..
Results (Thai) 3:[Copy]
Copied!
2.4.3 . มีการสนับสนุนสำหรับผลการเข้า ?
หมายถึงสัดส่วนที่ถูกต้องและ SDS ในความเข้าใจและ
เขียนภาษาไทยทั้งสองกลุ่มจะถูกนำเสนอในตารางที่ 2 มาตรการที่ 2 ซ้ำ
การวิเคราะห์ความแปรปรวน ( ANOVA ) กับ
เพื่อความเข้าใจก่อนและคะแนนทดสอบโพสต์เป็นในวิชาและกลุ่มปัจจัย
( วาดเมื่อเทียบกับการควบคุม ) เป็นปัจจัย
ระหว่างเรื่องแสดงผลหลักในช่วงเวลาที่ระบุว่าโดยรวม ถึงอย่างไร ระหว่างผู้เข้าร่วม

ความรู้ความเข้าใจก่อนเรียนและหลังเรียนแบบ F ( 1
46 ) = 98.97 ; p < . 05 ; บางส่วน eta2 = . 68 ปฏิสัมพันธ์นอกจากนี้
พบว่าได้รับความรู้เหล่านี้สูงขึ้น
ภาพวาดกลุ่มสูงกว่ากลุ่มควบคุม , F ( , 1 ) ) = ของเหลว ;
p < . 05 ;บางส่วน eta2 = . 50 .
สำหรับการวาดภาพแบบวัดซ้ำ ( คือไม่ได้
ตั้งแต่รายการเหล่านี้ถูกใช้ในหลังเดียว ในกรณีนี้ การรักษา การวิเคราะห์ความแปรปรวนร่วม ( ANCOVA ) ทำนายวาดภาพ
คะแนนกลุ่ม ( เขียนแบบและควบคุม ) เป็นแบบอิสระ
ตัวแปรและความรู้เดิมเป็นชุดพบว่า
การวาดภาพกลุ่มคะแนนดีขึ้นกว่ากลุ่มควบคุม
บนวาดหลัง f ( 1 , 45 ) = 13.49 , p = . 001 ) eta2 = 23.1
Cohen D นิยมวาดภาพกลุ่มกลุ่มควบคุม
0.85 เพื่อความเข้าใจก่อนเรียนและ 1.15 สําหรับรูปวาด
หลังทั้งหมด ซึ่งถือว่าผลขนาดใหญ่ จึงมีการสนับสนุนที่แข็งแกร่งสำหรับผลเข้า
รูปวาด ,ตามที่คาดการณ์ไว้
นอกจากนี้ พบว่า ทางกลุ่มต้องการวาด
เพิ่มเติมเวลาเรียน ( M = 21.08 นาที , SD = 4.24 ) สูงกว่ากลุ่มควบคุม ( M =
17.38 นาที , SD = 3.33 ) , F ( , 1 ) ) = 11.34 , p = . 002 ) = 20 , eta2
. . ดังนั้น เพื่อทดสอบว่าเวลาเรียน mediates ผลในเชิงบวกของการวาดภาพบนความเข้าใจข้อความ วิเคราะห์
ไกล่เกลี่ยเพิ่มเติม ( บารอน&เคนนี่1986 ) คำนวณโดยรวม
เวลาเรียนเป็น Predictor เพิ่มเติมในรูปแบบเชิงเส้น
ดังกล่าวข้างต้น การไกล่เกลี่ย ผลจะถูกตรวจพบว่าในกรณีนี้ผล
รูปวาดในความเข้าใจข้อความจะลดลงอย่างมาก .
ผลลัพธ์ของการวิเคราะห์ พบว่า ผลของการวาด
ทั้งความเข้าใจและแบบทดสอบคะแนนสอบ คะแนนไม่ได้
fullymediated โดยการเรียนรู้เวลา นั่นคือ รวมเวลาเรียนยัง
พบปฏิสัมพันธ์ระหว่างกลุ่ม ( เขียนแบบและควบคุม )
และเวลา ( ก่อนและหลัง ) ในการวาดภาพ กลุ่มทดลองมีความรู้สูงกว่ากำไรกว่า

เพื่อความเข้าใจ กลุ่มควบคุมทดสอบรายการ ( P < . 001 ) นอกจากนี้ การวาดภาพกลุ่ม
ยังคงสูงกว่ากลุ่มควบคุมที่สอน
รูปวาดหลังจากควบคุมเวลาเรียน ( P = . 009 ) .
นอกจากนี้ พบว่า นักเรียนในกลุ่ม
รูปวาดในการลงทุนความพยายามในการเรียนรู้จิตใจสูงกว่า
( M = 5.04 , SD = 1.12 ) สูงกว่านักเรียนในกลุ่มควบคุม ( M = 3.96 , SD = 1.65
F ( 1 ) 46 ) = ลง , p = . 011 บางส่วน eta2 = 13 ไม่มี
ความแตกต่างระหว่างสองกลุ่มในการรับรู้ปัญหาสินค้า
( รูปวาด ) : M = 4.08 , SD = 1.50 ; กลุ่มควบคุม : M = 4.25 , SD = 1.22
; F < 1 ) ซึ่งสอดคล้องกับการคาดการณ์เกี่ยวกับผลการรังสรรค์ มีการสนับสนุนบางส่วนสำหรับความคิดที่ว่า
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: