2.4. Radiative forcing of smoke particlesA metric typically used to as translation - 2.4. Radiative forcing of smoke particlesA metric typically used to as Indonesian how to say

2.4. Radiative forcing of smoke par

2.4. Radiative forcing of smoke particles
A metric typically used to assess and compare the anthropogenic and natural drivers of climate change, including greenhouse gases, aerosols, and black carbon, is radiative forcing (Forster et al., 2007). The definition of radiative forcing as adopted by the Intergovernmental Panel on Climate Change (IPCC) is the change in net radiation (W m2) at the tropopause after allowing for stratospheric temperatures to readjust to radiative equilibrium (Ramaswamy et al., 2001; Forster et al., 2007). The IPCC reports provided estimates of direct radiative forcing associated with the emissions of principal gases and aerosols (including aerosol-precursors). The emissions of aerosols generally contribute to a negative radiative forcing through the scattering of solar radiation. In the third assessment report (TAR) (IPCC, 2001a),DRF was estimated to be 0.4, 0.1, and +0.2Wm2 from sulfate, fossil OC, and fossil BC aerosols, respectively, emitted during the period of 1750–1998 (Table 3). The TAR reported a contribution of biomass burning to the DRF of roughly 0.4Wm2 from the scattering components (mainly organic carbon and inorganic compounds) and +0.2Wm2 from the absorbing components (BC), leading to an estimate of the net DRF of biomass burning aerosols of 0.20Wm2. In the IPCC fourth assessment report (FAR) for the aerosols emitted during the period of 1750–2005 (Forster et al., 2007; IPCC, 2007), DRF remained the same for sulfate and fossil BC aerosols, but the magnitude was slightly reduced to 0.05Wm2 for fossil OC. The FAR estimate of the net DRF from biomass burning aerosols turned to slightly positive at 0.03Wm2. The change was mainly owing to improvements in the models in representing the absorption properties of the aerosol and the effects of biomass burning aerosol overlying clouds. The large amount of incident solar radiation in the tropics enhances the radiative forcing of aerosols (Holben et al., 2001). Penner et al. (1992) emphasized the importance of smoke particles in the Amazon to the global radiative budget. Based on carbon emissions from biomass burning (Crutzen and Andreae, 1990; Hao et al., 1990), a globally averaged smoke DRF of about 1Wm2 was obtained, comparable to that of anthropogenic sulfate aerosols. Hobbs et al. (1997) reassessed the role of smoke from biomass burning using airborne measurements in Brazil and obtained a value that is only about one-third of the early estimate. However, they pointed out that the DRF could be larger on regional scales. This result was also confirmed in Ross et al. (1998), who obtained DRF of 15 ± 5Wm2 for the 1995 Amazon smoke season using a one-dimensional atmospheric radiative transfer model with a total optical depth of 0.75. This magnitude is equivalent to an annually averaged DRF of about 2.5Wm2 in a typical smoke area in Brazil. Large smoke DRF was also found in Africa during the Southern African Regional Science Initiative (SAFARI 2000) (Swap et al., 2003), in Southeast Asia during the 1997 forest fires (Kobayashi et al., 2004), and in the 1988 Yellowstone fires (Liu, 2005a). The magnitude of IRF may be comparable to or even greater than that of DRF. In the IPCC FAR (IPCC 2007), the IRF of all atmospheric aerosols emitted during the period of 1750–2005 was estimated to be 0.7Wm2 with a range from 0.18 to 0.9Wm2. Chuang et al. (2002) estimate an indirect aerosol forcing of 1.16Wm2 for carbonaceous aerosols from fires, although this estimate only includes the cloud albedo effect. Ward et al. (2012) included additional indirect effects such as effects on cloud height and lifetime, and showed comparable forcings, ranging between 1.74 to 1.00Wm2. There are no estimates yet for the semi-direct radiative forcing in the IPCC reports. However, a few case studies provided some estimates of its magnitude. Liu (2005b) obtained a DRF of 16.5Wm2 for the smoke particles from the Amazon biomass burning simulated with a three-dimensional regional climate model. The magnitude is sharply reduced to 9.8Wm2 over the smoke region when the atmospheric feedback of reduced clouds is considered. The semi-direct radiative forcing is therefore about +7Wm2.
2.5. Black carbon
A special optical property of BC that differentiates it from other types of carbonaceous aerosol is its strong absorption of solar radiation. Thus, although the overall radiative forcing of atmospheric aerosol is negative, the BC component can produce positive radiative forcing. (IPCC, 2007). Chung et al. (2005) and Ramanathan and Carmichael (2008) reported a global total black carbon DRF of 0.9Wm2, a value larger than the IPCC estimates and the DRF associated with other greenhouse gases such as CH4, N2O, or tropospheric O3. A number of other studies (e.g., Haywood and Ramaswamy, 1998; Jacobson, 2001; Chung and Seinfeld, 2005; Sato et al., 2003; Bond et al., 2010) also reported large radiative forcing values between 0.4 and 1.2Wm2 from all BC emissions. Chung and Seinfeld (2005) estimated a radiative forcing range of 0.52–0.93Wm2 for the Northern Hemisphere due to black carbon emissions from fossil fuels, biofuels, and biomass burning. Myhre et al. (2009) reported a radiative forcing range of about 0.1– 0.7Wm2 over the contiguous US due to fossil fuel and biofuel emissions. For BC emitted from biomass burning alone, the global radiative forcing was estimated to be +0.2Wm2 in the IPCC TAR (IPCC, 2001b).
2.6. CO2 radiative forcing
According to measurements recorded at a Hawaiian observatory, atmospheric CO2 concentrations rose from 315.98 ppmv in 1959 to 385.34 ppmv in 2008 (Keeling et al., 2009), a 22% increase over 50 years. The concentrations have increased by about 40% from about 285 ppmv in the mid-1700s. Atmospheric CO2 can absorb long-wave radiation emitted from the ground. The IPCC FAR (IPCC 2007) estimated that the radiative forcing resulting from CO2 increases since 1750 is about 1.66 ± 0.17Wm2. The large ratio of fire to total carbon emissions suggests a significant contribution of fire to total CO2 radiative forcing.
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
2.4. radiasi memaksa partikel asap
metrik yang biasanya digunakan untuk menilai dan membandingkan driver antropogenik dan alami dari perubahan iklim, termasuk gas rumah kaca, aerosol dan hitam karbon, adalah radiasi memaksa (Forster et al., 2007). Definisi radiasi memaksa sebagai diadopsi oleh Panel Antarpemerintah tentang perubahan iklim (IPCC) adalah perubahan bersih radiasi (W m 2) di tropopause setelah memungkinkan untuk stratosfir suhu untuk menyesuaikan keseimbangan radiasi (Ramaswamy et al., 2001; Forster et al., 2007). Laporan IPCC disediakan perkiraan memaksa radiasi langsung terkait dengan emisi gas utama dan aerosol (termasuk aerosol-prekursor). Emisi aerosol umumnya berkontribusi memaksa radiasi yang negatif melalui penyebaran radiasi matahari. Dalam laporan penilaian ketiga (TAR) (IPCC, 2001a), DRF diperkirakan 0.4, 0.1, dan 0.2Wm 2 dari sulfat, fosil OC, dan fosil BC aerosol, masing-masing, dipancarkan selama periode 1750-1998 (Tabel 3). TAR dilaporkan kontribusi biomassa pembakaran untuk DRF kira-kira 0.4Wm 2 dari komponen berserakan (karbon terutama organik dan senyawa anorganik) dan 0.2Wm 2 dari menyerap komponen (SM), yang mengarah ke perkiraan DRF bersih biomassa pembakaran aerosol dari 0.20Wm 2. Dalam penilaian keempat IPCC laporan (jauh) aerosol yang dipancarkan selama periode 1750 – 2005 (Forster et al., 2007; IPCC, 2007), DRF tetap sama untuk sulfat dan fosil aerosol BC, tetapi besarnya sedikit dikurangi menjadi 0.05Wm 2 untuk fosil OC. Perkiraan FAR DRF bersih dari biomassa pembakaran aerosol berpaling ke sedikit positif di 0.03Wm 2. Perubahan ini terutama karena perbaikan dalam model dalam mewakili sifat penyerapan aerosol dan efek dari biomassa pembakaran aerosol atasnya awan. Jumlah besar insiden radiasi matahari di daerah tropis meningkatkan memaksa radiasi dari aerosol (Holben et al., 2001). Penner et al. (1992) menekankan pentingnya partikel asap di Amazon anggaran radiasi global. Berdasarkan emisi karbon dari biomassa pembakaran (Crutzen dan Andreae, 1990; Hao et al., 1990), DRF asap global rata-rata tentang 1Wm 2 adalah diperoleh, sebanding dengan yang aerosol sulfat antropogenik. Hobbs et al. (1997) dikaji kembali peran asap dari biomassa pembakaran menggunakan udara pengukuran di Brazil dan memperoleh nilai yang hanya sekitar sepertiga dari perkiraan awal. Namun, mereka menunjukkan bahwa DRF bisa lebih besar pada skala regional. Hasil ini dikonfirmasi di Ross et al. (1998), yang diperoleh DRF 15 ± 5Wm 2 untuk musim Amazon asap 1995 menggunakan model dimensi transfer radiasi atmosfer dengan total kedalaman optik 0,75. Ini setara dengan DRF per tahun rata-rata dari sekitar 2.5Wm 2 di area asap khas di Brasil. Besar asap DRF juga ditemukan di Afrika selama Selatan Afrika Science inisiatif (SAFARI 2000) (Swap et al., 2003), di Asia Tenggara selama kebakaran hutan 1997 (Kobayashi et al., 2004), dan dalam 1988 Yellowstone kebakaran (Liu, 2005a). Besarnya IRF mungkin sebanding dengan atau bahkan lebih besar daripada DRF. Di IPCC jauh (IPCC 2007), IRF semua atmosfer aerosol yang dipancarkan selama periode 1750 – 2005 diperkirakan 0.7Wm 2 dengan berkisar 0,18-0.9Wm 2. Chuang et al. (2002) memperkirakan langsung aerosol memaksa dari 1.16Wm 2 untuk mengimbuhkan aerosol dari kebakaran, meskipun perkiraan ini hanya mencakup awan terkendali. Ward et al. (2012) termasuk efek tidak langsung tambahan seperti efek pada ketinggian awan dan seumur hidup, dan menunjukkan forcings sebanding, berkisar antara 2 1,74 untuk 1.00Wm. Ada tidak ada perkiraan namun untuk semi langsung radiasi memaksa dalam laporan IPCC. Namun, beberapa studi kasus diberikan beberapa perkiraan besarannya. Liu (2005b) diperoleh DRF 16.5Wm 2 untuk partikel asap dari biomassa Amazon pembakaran simulasi dengan model tiga dimensi iklim daerah. Besarnya tajam berkurang sampai 9.8Wm 2 atas wilayah asap ketika umpan balik atmosfer berkurang awan dianggap. Semi langsung radiasi memaksa adalah tentang 7Wm 2.
2.5. Hitam karbon
properti optik khusus BC yang membedakan dari jenis aerosol mengimbuhkan adalah penyerapan radiasi matahari yang kuat. Dengan demikian, meskipun memaksa keseluruhan radiasi dari atmosfer aerosol negatif, komponen BC dapat menghasilkan memaksa radiasi yang positif. (IPCC, 2007). Chung et al. (2005) dan dariwrong dan Carmichael (2008) melaporkan karbon hitam total global DRF 0.9Wm 2, nilai yang lebih besar daripada perkiraan IPCC dan DRF yang terkait dengan gas rumah kaca lainnya seperti CH4, N2O atau O3 troposfer. Sejumlah penelitian lain (misalnya, Haywood dan Ramaswamy, 1998; Jacobson, 2001; Chung dan Seinfeld, 2005; Sato et al., 2003; Obligasi et al., 2010) juga melaporkan besar radiasi memaksa nilai antara 0.4 dan 1.2Wm 2 dari seluruh emisi BC. Chung dan Seinfeld (2005) diperkirakan sejumlah 0.52 radiasi memaksa-0.93Wm 2 untuk belahan bumi utara karena emisi karbon hitam dari bahan bakar fosil, biofuel dan pembakaran biomassa. Myhre et al. (2009) melaporkan radiasi memaksa berbagai sekitar 0.1-0.7Wm 2 atas berdekatan Amerika Serikat dikarenakan bahan bakar fosil dan emisi biofuel. Untuk SM dipancarkan dari biomassa pembakaran saja, memaksa radiasi global diperkirakan 0.2Wm 2 di TAR IPCC (IPCC, 2001b).
2.6. CO2 radiasi memaksa
menurut pengukuran tercatat di observatory Hawaii, atmosfer konsentrasi CO2 naik dari 315.98 ppmv di tahun 1959 untuk 385.34 ppmv pada tahun 2008 (Keeling et al., 2009), 22% meningkatkan lebih dari 50 tahun. Konsentrasi telah meningkat sekitar 40% dari sekitar 285 ppmv di pertengahan tahun 1700-an. CO2 di atmosfer dapat menyerap panjang gelombang radiasi yang dipancarkan dari permukaan tanah. IPCC jauh (IPCC 2007) memperkirakan bahwa radiasi memaksa akibat CO2 meningkat sejak 1750 adalah sekitar 1.66 ± 0.17Wm 2. Rasio besar api untuk total emisi karbon menunjukkan kontribusi yang signifikan api Total CO2 radiasi memaksa.
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
2.4. Radiative forcing of smoke particles
A metric typically used to assess and compare the anthropogenic and natural drivers of climate change, including greenhouse gases, aerosols, and black carbon, is radiative forcing (Forster et al., 2007). The definition of radiative forcing as adopted by the Intergovernmental Panel on Climate Change (IPCC) is the change in net radiation (W m2) at the tropopause after allowing for stratospheric temperatures to readjust to radiative equilibrium (Ramaswamy et al., 2001; Forster et al., 2007). The IPCC reports provided estimates of direct radiative forcing associated with the emissions of principal gases and aerosols (including aerosol-precursors). The emissions of aerosols generally contribute to a negative radiative forcing through the scattering of solar radiation. In the third assessment report (TAR) (IPCC, 2001a),DRF was estimated to be 0.4, 0.1, and +0.2Wm2 from sulfate, fossil OC, and fossil BC aerosols, respectively, emitted during the period of 1750–1998 (Table 3). The TAR reported a contribution of biomass burning to the DRF of roughly 0.4Wm2 from the scattering components (mainly organic carbon and inorganic compounds) and +0.2Wm2 from the absorbing components (BC), leading to an estimate of the net DRF of biomass burning aerosols of 0.20Wm2. In the IPCC fourth assessment report (FAR) for the aerosols emitted during the period of 1750–2005 (Forster et al., 2007; IPCC, 2007), DRF remained the same for sulfate and fossil BC aerosols, but the magnitude was slightly reduced to 0.05Wm2 for fossil OC. The FAR estimate of the net DRF from biomass burning aerosols turned to slightly positive at 0.03Wm2. The change was mainly owing to improvements in the models in representing the absorption properties of the aerosol and the effects of biomass burning aerosol overlying clouds. The large amount of incident solar radiation in the tropics enhances the radiative forcing of aerosols (Holben et al., 2001). Penner et al. (1992) emphasized the importance of smoke particles in the Amazon to the global radiative budget. Based on carbon emissions from biomass burning (Crutzen and Andreae, 1990; Hao et al., 1990), a globally averaged smoke DRF of about 1Wm2 was obtained, comparable to that of anthropogenic sulfate aerosols. Hobbs et al. (1997) reassessed the role of smoke from biomass burning using airborne measurements in Brazil and obtained a value that is only about one-third of the early estimate. However, they pointed out that the DRF could be larger on regional scales. This result was also confirmed in Ross et al. (1998), who obtained DRF of 15 ± 5Wm2 for the 1995 Amazon smoke season using a one-dimensional atmospheric radiative transfer model with a total optical depth of 0.75. This magnitude is equivalent to an annually averaged DRF of about 2.5Wm2 in a typical smoke area in Brazil. Large smoke DRF was also found in Africa during the Southern African Regional Science Initiative (SAFARI 2000) (Swap et al., 2003), in Southeast Asia during the 1997 forest fires (Kobayashi et al., 2004), and in the 1988 Yellowstone fires (Liu, 2005a). The magnitude of IRF may be comparable to or even greater than that of DRF. In the IPCC FAR (IPCC 2007), the IRF of all atmospheric aerosols emitted during the period of 1750–2005 was estimated to be 0.7Wm2 with a range from 0.18 to 0.9Wm2. Chuang et al. (2002) estimate an indirect aerosol forcing of 1.16Wm2 for carbonaceous aerosols from fires, although this estimate only includes the cloud albedo effect. Ward et al. (2012) included additional indirect effects such as effects on cloud height and lifetime, and showed comparable forcings, ranging between 1.74 to 1.00Wm2. There are no estimates yet for the semi-direct radiative forcing in the IPCC reports. However, a few case studies provided some estimates of its magnitude. Liu (2005b) obtained a DRF of 16.5Wm2 for the smoke particles from the Amazon biomass burning simulated with a three-dimensional regional climate model. The magnitude is sharply reduced to 9.8Wm2 over the smoke region when the atmospheric feedback of reduced clouds is considered. The semi-direct radiative forcing is therefore about +7Wm2.
2.5. Black carbon
A special optical property of BC that differentiates it from other types of carbonaceous aerosol is its strong absorption of solar radiation. Thus, although the overall radiative forcing of atmospheric aerosol is negative, the BC component can produce positive radiative forcing. (IPCC, 2007). Chung et al. (2005) and Ramanathan and Carmichael (2008) reported a global total black carbon DRF of 0.9Wm2, a value larger than the IPCC estimates and the DRF associated with other greenhouse gases such as CH4, N2O, or tropospheric O3. A number of other studies (e.g., Haywood and Ramaswamy, 1998; Jacobson, 2001; Chung and Seinfeld, 2005; Sato et al., 2003; Bond et al., 2010) also reported large radiative forcing values between 0.4 and 1.2Wm2 from all BC emissions. Chung and Seinfeld (2005) estimated a radiative forcing range of 0.52–0.93Wm2 for the Northern Hemisphere due to black carbon emissions from fossil fuels, biofuels, and biomass burning. Myhre et al. (2009) reported a radiative forcing range of about 0.1– 0.7Wm2 over the contiguous US due to fossil fuel and biofuel emissions. For BC emitted from biomass burning alone, the global radiative forcing was estimated to be +0.2Wm2 in the IPCC TAR (IPCC, 2001b).
2.6. CO2 radiative forcing
According to measurements recorded at a Hawaiian observatory, atmospheric CO2 concentrations rose from 315.98 ppmv in 1959 to 385.34 ppmv in 2008 (Keeling et al., 2009), a 22% increase over 50 years. The concentrations have increased by about 40% from about 285 ppmv in the mid-1700s. Atmospheric CO2 can absorb long-wave radiation emitted from the ground. The IPCC FAR (IPCC 2007) estimated that the radiative forcing resulting from CO2 increases since 1750 is about 1.66 ± 0.17Wm2. The large ratio of fire to total carbon emissions suggests a significant contribution of fire to total CO2 radiative forcing.
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: