Results and Discussion3.1 Soil and tailing propertiesThe field study a translation - Results and Discussion3.1 Soil and tailing propertiesThe field study a Indonesian how to say

Results and Discussion3.1 Soil and

Results and Discussion
3.1 Soil and tailing properties
The field study area soil profile has been described elsewhere ( Siswanto et al., 2010), as Lithic dystropept with
sandy clay loam to clay loam soil texture, slightly acidic, with low soil organic matter content, low nitrogen and
phosphorus content, but high potassium content (Table 1). The concentration of heavy metals in the soil was at a
level below the limit of detection of the analytical method used.
The results presented in Table 1 show that waste rock has a lower organic C, N and P content compared to the
natural soil, but has a higher content of K and heavy metals. A similar tendency occurred for tailing, except it had
a significantly higher heavy metal content.

3.2 Mycorrhizal fungi
The results of mycorrhizal spore counting, expressed as spore density, are presented in Table 2. The percentage of
infected roots is shown in Table 3, and a visual figure of genus Glomus and Gigaspora observed in this works is is
presented as Figure 1.

The results in Table 2 show that in general, spore density in the waste rock and mine tailings was lower than that of
the natural soil. In the soil, the spore density varied from 77 spores/100g soil to 240 spores/100g soil. The highest
spore density (240 spores/100g) was observed in the rhizosphere of cassava, and the lowest (77 spores/100g) was
in the rhizosphere of maize. In the mine tailings, the spore density varied from 34 spores/100g soil to 78
spores/100g soil. Again, the highest spore density occured in the rhizosphere of cassava.

The lower spore density in the rhizopshere of plants growing in waste rocks and tailings indicates that soil
disturbance decreases the abundance of mycohizal fungi spores. This is a likely an indicator of decreasing
environtmental quality. Sylvia and Williams (1992) found that mining decreases the abundance and the diverty of
mycorrhizal fungi in the rizosphere. A decrease in abundance and diversity of mycorrhizal fungi due to heavy
metal contaminant had also been shown by Koomen et al., (1998).
The results presented in Table 3 show that the mycorrhizal fungi in the Sekotong artisanal mining area was
dominated by genus Glomus. All plants observed in this study were associated with this mycorrhizal fungi; and
with the exception of maize, all roots of the plants observed were infected by Glomus mossaeae. Other mycorrhizal
fungi found were genus Gigaspora, Scutellospora, and Acaulospora.

The abundance of the mycorrhizal fungi varies from low (in maize roots) to high (cassava and acacia), and
decreased as the soil was disturbed. The mycorrhizal fungal species Glomus aggregatum, Glomus geosporum, and
Acaulospora scrobiculata were not observed in the tailings. This indicates that these three mycorrhizal species, at
least under the conditions apparent at the Sekotong study area, do not tolerate the environmental disturbance that is
associated with mining
4. Conclusion
It is widely understood that heavy metal contamination at mine sites cannot be chemically degraded. The
traditional technology used to neutralize the negative effects of heavy metals is to physically remove the
contaminants, either by excavation and subsequent disposal to a landfill site, or by soil washing. However, these
methods are costly and simply move the problem to a new location. An alternative method to decrease the negative
impact of heavy metals is to imobilize the contaminants in the soil or soil-like medium. Phytoremediation, the use
of plants either to remove or to immobilize contaminants and to stabilize soil is becoming increasingly important
as an option to rehabilitate degraded land. The system shows promise for use at artisanal mine sites in developing
areas of the world. The abundance and diversity of mycorrhizal fungi is recognised as a key component of the
soil-plant system in phytoremediation. The occurrence of mycorrhizal fungi can promote plant growth by
increasing nutrient absorption (Marschner, 1998) as well as protecting plants from the harmful effect of the toxic
metals (Galli et al. 1994). However, disturbance of soil will change the abundance and diversity of the mycorrhizal
fungal population. Under some conditions, mycorrhizal fungi populations can become severely diminished was
diminished (Tables 2 and 3). Fortunately, as this research shows, there are some mycorrhizal fungal species
tolerant to the disturbed conditions apparent at artisanal mine sites.
The results in Table 3 show that mycorrhizal fungi belonging to the genus Glomus were observed in the roots of
most plants growing in gold tailings. These local and indigenous mycorrhizal fungi appear to be tolerant of the
chemical and physical conditions at the study site, and could be developed for use as an inoculant in the
re-vegetation of the Sekotong artisanal gold mining area.

0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
Hasil dan diskusi3.1 tanah dan Tailings propertiBidang studi wilayah tanah profil telah digambarkan di tempat lain (Siswanto et al., 2010), prasasti dystropept denganlempung berpasir lempung untuk clay Geluh tekstur tanah, sedikit asam, dengan kandungan, bahan organik tanah rendah rendah nitrogen dankandungan fosfor, tapi kandungan kalium tinggi (Tabel 1). Konsentrasi logam berat dalam tanah padatingkat di bawah batas deteksi metode analisis yang digunakan.Hasil yang diajukan dalam tabel 1 menunjukkan bahwa limbah batu memiliki C organik lebih rendah, dibandingkan dengan konten N dan Palam tanah, tetapi memiliki kandungan yang lebih tinggi K dan logam berat. Kecenderungan serupa terjadi Tailings, kecuali itukandungan logam berat secara signifikan lebih tinggi.3.2 jamur mikorizaHasil dari spora mikoriza menghitung, dinyatakan sebagai kepadatan spora, disajikan dalam tabel 2. Persentaseakar terinfeksi ditampilkan dalam tabel 3, dan sosok visual dari genus Glomus dan Gigaspora yang diamati dalam karya-karya ini adalahdisajikan sebagai gambar 1. Hasil dalam tabel 2 menunjukkan bahwa secara umum, spora kepadatan di batu limbah dan limbah tailing tambang adalah lebih rendah daripadaTanah alam. Di dalam tanah, kepadatan spora bervariasi dari 77 spora / 100g tanah sampai 240 spora / 100g tanah. TertinggiSpora kepadatan (240 spora / 100g) diamati pada rhizosphere singkong, dan adalah terendah (77 spora / 100g)dalam rhizosphere jagung. Dalam tailing tambang, kepadatan spora bervariasi dari 34 spora / 100g tanah sampai 78Spora / 100g tanah. Sekali lagi, spora kepadatan tertinggi terjadi di rhizosphere ubi kayu.Spora lebih rendah kepadatan di rhizopshere tanaman yang tumbuh di batu limbah dan limbah tailing menunjukkan bahwa tanahgangguan menurun kelimpahan Spora jamur mycohizal. Ini adalah kemungkinan indikator penurunankualitas lingkungan. Sylvia dan Williams (1992) menemukan bahwa pertambangan menurun kelimpahan dan diverty darijamur mikoriza di rizosphere. Penurunan dalam kelimpahan dan keragaman jamur mikoriza karena beratkontaminan logam juga telah terbukti oleh Koomen et al. (1998).Hasil yang disajikan dalam tabel 3 menunjukkan bahwa jamur mikoriza di Sekotong area penambangan artisanal adalahdidominasi oleh genus Glomus. Semua tanaman yang diamati dalam studi ini dikaitkan dengan jamur mikoriza ini; dandengan pengecualian jagung, Semua akar tanaman diamati yang terinfeksi oleh Glomus mossaeae. Lain mikorizajamur yang ditemukan adalah genus Gigaspora, Scutellospora, dan Acaulospora.Kelimpahan dari jamur mikoriza bervariasi dari rendah (jagung akar) tinggi (singkong dan akasia), danmenurun sebagai tanah terganggu. Spesies jamur mikoriza Glomus aggregatum, Glomus geosporum, danAcaulospora scrobiculata yang tidak diamati dalam limbah tailing. Ini menunjukkan bahwa tiga spesies mikoriza, disetidaknya di bawah kondisi yang jelas di Sekotong area studi, tidak mentolerir gangguan lingkungan yangterkait dengan pertambangan4. kesimpulanIni secara luas dipahami bahwa kontaminasi logam berat di tambang situs tidak dapat secara kimiawi terdegradasi. Theteknologi tradisional yang digunakan untuk menetralkan efek negatif dari logam berat adalah untuk secara fisik menghapuskontaminan, baik oleh penggalian dan pembuangan berikutnya ke situs TPA, atau oleh tanah cuci. Namun, inimetode mahal dan hanya memindahkan masalah ke lokasi baru. Metode alternatif untuk mengurangi negatifdampak dari logam berat adalah untuk imobilize kontaminan dalam tanah atau tanah seperti media. Fitoremediasi, menggunakantanaman baik untuk menghapus atau untuk melumpuhkan kontaminan dan menstabilkan tanah menjadi semakin pentingsebagai pilihan untuk merehabilitasi lahan terdegradasi. Sistem ini menunjukkan janji untuk digunakan di artisanal tambang situs dalam mengembangkanwilayah di dunia. Kelimpahan dan keragaman jamur mikoriza diakui sebagai komponen kunci dariTanah-tanaman sistem di fitoremediasi. Terjadinya jamur mikoriza dapat mempromosikan pertumbuhan tanaman olehmeningkatkan penyerapan nutrisi (Marschner, 1998) serta melindungi tanaman dari efek berbahaya dari racunlogam (Galli et al. 1994). Namun, gangguan tanah akan mengubah kelimpahan dan keragaman mikorizajamur populasi. Beberapa kondisi, jamur mikoriza populasi dapat menjadi sangat berkurang adalahberkurang (Tabel 2 dan 3). Untungnya, sebagai penelitian ini menunjukkan, ada beberapa spesies jamur mikorizatoleran terhadap kondisi terganggu jelas di artisanal saya situs.Hasil dalam tabel 3 menunjukkan bahwa jamur mikoriza milik genus Glomus yang diamati pada akarkebanyakan tanaman tumbuh dalam tailing emas. Jamur mikoriza ini lokal dan asli muncul untuk menjadi toleran terhadapkimia dan fisik kondisi di situs studi, dan bisa dikembangkan untuk digunakan sebagai inokulan ditumbuh-tumbuhan kembali wilayah pertambangan emas artisanal Sekotong.
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
Results and Discussion
3.1 Soil and tailing properties
The field study area soil profile has been described elsewhere ( Siswanto et al., 2010), as Lithic dystropept with
sandy clay loam to clay loam soil texture, slightly acidic, with low soil organic matter content, low nitrogen and
phosphorus content, but high potassium content (Table 1). The concentration of heavy metals in the soil was at a
level below the limit of detection of the analytical method used.
The results presented in Table 1 show that waste rock has a lower organic C, N and P content compared to the
natural soil, but has a higher content of K and heavy metals. A similar tendency occurred for tailing, except it had
a significantly higher heavy metal content.

3.2 Mycorrhizal fungi
The results of mycorrhizal spore counting, expressed as spore density, are presented in Table 2. The percentage of
infected roots is shown in Table 3, and a visual figure of genus Glomus and Gigaspora observed in this works is is
presented as Figure 1.

The results in Table 2 show that in general, spore density in the waste rock and mine tailings was lower than that of
the natural soil. In the soil, the spore density varied from 77 spores/100g soil to 240 spores/100g soil. The highest
spore density (240 spores/100g) was observed in the rhizosphere of cassava, and the lowest (77 spores/100g) was
in the rhizosphere of maize. In the mine tailings, the spore density varied from 34 spores/100g soil to 78
spores/100g soil. Again, the highest spore density occured in the rhizosphere of cassava.

Kepadatan spora yang lebih rendah di rhizopshere dari tanaman yang tumbuh di batu limbah dan tailing menunjukkan bahwa tanah
gangguan mengurangi kelimpahan spora jamur mycohizal. Ini adalah kemungkinan indikator penurunan
kualitas pengendapan. Sylvia dan Williams (1992) menemukan bahwa pertambangan menurun kelimpahan dan diverty dari
jamur mikoriza di rizosphere tersebut. Penurunan kelimpahan dan keragaman jamur mikoriza karena berat
kontaminan logam juga telah ditunjukkan oleh Koomen et al., (1998).
Hasil yang disajikan pada Tabel 3 menunjukkan bahwa jamur mikoriza di daerah pertambangan rakyat Sekotong itu
didominasi oleh genus Glomus. Semua tanaman yang diamati dalam penelitian ini terkait dengan jamur mikoriza ini; dan
dengan pengecualian jagung, semua akar tanaman diamati terinfeksi oleh Glomus mossaeae.
Mikoriza lainnya jamur yang ditemukan adalah genus Gigaspora, Scutellospora, dan Acaulospora.

The abundance of the mycorrhizal fungi varies from low (in maize roots) to high (cassava and acacia), and
decreased as the soil was disturbed. The mycorrhizal fungal species Glomus aggregatum, Glomus geosporum, and
Acaulospora scrobiculata were not observed in the tailings. This indicates that these three mycorrhizal species, at
least under the conditions apparent at the Sekotong study area, do not tolerate the environmental disturbance that is
associated with mining
4. Conclusion
It is widely understood that heavy metal contamination at mine sites cannot be chemically degraded. The
traditional technology used to neutralize the negative effects of heavy metals is to physically remove the
contaminants, either by excavation and subsequent disposal to a landfill site, or by soil washing. However, these
methods are costly and simply move the problem to a new location. An alternative method to decrease the negative
impact of heavy metals is to imobilize the contaminants in the soil or soil-like medium. Phytoremediation, the use
of plants either to remove or to immobilize contaminants and to stabilize soil is becoming increasingly important
as an option to rehabilitate degraded land. The system shows promise for use at artisanal mine sites in developing
areas of the world. The abundance and diversity of mycorrhizal fungi is recognised as a key component of the
soil-plant system in phytoremediation. The occurrence of mycorrhizal fungi can promote plant growth by
increasing nutrient absorption (Marschner, 1998) as well as protecting plants from the harmful effect of the toxic
metals (Galli et al. 1994). However, disturbance of soil will change the abundance and diversity of the mycorrhizal
fungal population. Under some conditions, mycorrhizal fungi populations can become severely diminished was
diminished (Tables 2 and 3). Fortunately, as this research shows, there are some mycorrhizal fungal species
tolerant to the disturbed conditions apparent at artisanal mine sites.
The results in Table 3 show that mycorrhizal fungi belonging to the genus Glomus were observed in the roots of
most plants growing in gold tailings. These local and indigenous mycorrhizal fungi appear to be tolerant of the
chemical and physical conditions at the study site, and could be developed for use as an inoculant in the
re-vegetation of the Sekotong artisanal gold mining area.

Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: