of a network structured like a spider’s web; “the junctures,or nodes,  translation - of a network structured like a spider’s web; “the junctures,or nodes,  Indonesian how to say

of a network structured like a spid

of a network structured like a spider’s web; “the junctures,
or nodes, can be thought of as pieces of represented information,
and threads between them as the connections or
relationships” (p. 67). Mathematical connections can also
be described as components of a schema or connected
groups of schemas within a mental network. Marshall
(1995) posits that a defining feature of schema is the
presence of connections. The strength and cohesiveness of
a schema is dependent on connectivity of components
within the schema or between groups of schemata. This
model suggests prospective middle grades teachers learn
mathematics through assimilating or connecting new
information into their mental networks, forming new connection(
s) between existing knowledge components,
accommodating or reorganizing their schemata to address
perturbations in their knowledge structure and to correct
misconceptions.
Although mathematical connections have been defined,
described, or categorized in various ways, the common
thread is the idea of a mathematical connection as a link
or bridge between mathematical ideas. For the purposes
of this study, a mathematical connection is a link (or
bridge) in which prior or new knowledge is used to establish
or strengthen an understanding of relationship(s)
between or among mathematical ideas, concepts, strands,
or representations.
Mathematical understanding requires students to make
connections between mathematical ideas, facts, procedures,
and relationships (Hiebert & Carpenter, 1992; Ma,
1999; Moschkovich, Schoenfeld, & Arcavi, 1993; Skemp,
1989); mathematical connections are “tools” for problems
solving (NCTM, 1989, 2000). As Hodgson (1995) points
out, “. . . the investigation of problem situations leads naturally
to the establishment and use of connections. . . . Connections
are . . . integral components of successful problem
solving” (p. 18). Thus, prospective middle grades teachers
must be prepared to make connections between the content
to be learned and their students’ understanding.
Although there are a few studies examining mathematical
connections of prospective teachers at the elementary
and secondary level (Bartels, 1995; Donigan, 1999; Evitts,
2005; Hau, 1993; Roddy, 1992;Wood, 1993), there is little
research on mathematical connections made by prospective
teachers at the middle grades level. Traditionally, measurements
of teachers’ knowledge have been assessed
using variables such as coursework, degree(s) earned, certification
routes, Praxis scores, and years taught. As a
result, the empirical evidence establishing a connection
between teachers’ mathematics knowledge of teaching and
student achievement has been limited (Wilson, Floden, &
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
of a network structured like a spider’s web; “the junctures,or nodes, can be thought of as pieces of represented information,and threads between them as the connections orrelationships” (p. 67). Mathematical connections can alsobe described as components of a schema or connectedgroups of schemas within a mental network. Marshall(1995) posits that a defining feature of schema is thepresence of connections. The strength and cohesiveness ofa schema is dependent on connectivity of componentswithin the schema or between groups of schemata. Thismodel suggests prospective middle grades teachers learnmathematics through assimilating or connecting newinformation into their mental networks, forming new connection(s) between existing knowledge components,accommodating or reorganizing their schemata to addressperturbations in their knowledge structure and to correctmisconceptions.Although mathematical connections have been defined,described, or categorized in various ways, the commonthread is the idea of a mathematical connection as a linkor bridge between mathematical ideas. For the purposesof this study, a mathematical connection is a link (orbridge) in which prior or new knowledge is used to establishor strengthen an understanding of relationship(s)between or among mathematical ideas, concepts, strands,or representations.Mathematical understanding requires students to makeconnections between mathematical ideas, facts, procedures,and relationships (Hiebert & Carpenter, 1992; Ma,1999; Moschkovich, Schoenfeld, & Arcavi, 1993; Skemp,1989); mathematical connections are “tools” for problemssolving (NCTM, 1989, 2000). As Hodgson (1995) pointsout, “. . . the investigation of problem situations leads naturallyto the establishment and use of connections. . . . Connectionsare . . . integral components of successful problemsolving” (p. 18). Thus, prospective middle grades teachersmust be prepared to make connections between the contentto be learned and their students’ understanding.Although there are a few studies examining mathematicalconnections of prospective teachers at the elementaryand secondary level (Bartels, 1995; Donigan, 1999; Evitts,2005; Hau, 1993; Roddy, 1992;Wood, 1993), there is littleresearch on mathematical connections made by prospectiveteachers at the middle grades level. Traditionally, measurementsof teachers’ knowledge have been assessedusing variables such as coursework, degree(s) earned, certificationroutes, Praxis scores, and years taught. As aresult, the empirical evidence establishing a connectionbetween teachers’ mathematics knowledge of teaching andstudent achievement has been limited (Wilson, Floden, &
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
dari jaringan terstruktur seperti sarang laba-laba; "Yang saat-saat,
atau node, dapat dianggap sebagai potongan informasi yang diwakili,
dan benang di antara mereka sebagai koneksi atau
hubungan" (hal. 67). Koneksi matematika juga dapat
digambarkan sebagai komponen dari skema atau terhubung
kelompok skema dalam jaringan mental. Marshall
(1995) berpendapat bahwa ciri skema adalah
kehadiran koneksi. Kekuatan dan kekompakan
sebuah skema tergantung pada konektivitas komponen
dalam skema atau antara kelompok schemata. Ini
Model menunjukkan calon nilai tengah guru belajar
matematika melalui asimilasi atau menghubungkan baru
informasi ke jaringan mental mereka, membentuk koneksi baru (
s) antara komponen pengetahuan yang ada,
menampung atau reorganisasi schemata mereka untuk mengatasi
gangguan dalam struktur pengetahuan mereka dan untuk memperbaiki
kesalahpahaman.
Meskipun matematika koneksi telah ditetapkan,
dijelaskan, atau dikategorikan dalam berbagai cara, umum
benang adalah gagasan dari koneksi matematika sebagai penghubung
atau jembatan antara ide-ide matematika. Untuk keperluan
studi ini, koneksi matematika adalah link (atau
jembatan) di mana pengetahuan sebelumnya atau baru digunakan untuk membangun
atau memperkuat pemahaman tentang hubungan (s)
antara atau di antara matematika ide, konsep, helai,
atau representasi.
Matematika pemahaman menuntut siswa untuk membuat
hubungan antara ide-ide matematika, fakta, prosedur,
dan hubungan (Hiebert & Carpenter, 1992; Ma,
1999; Moschkovich, Schoenfeld, & Arcavi, 1993; Skemp,
1989); koneksi matematika adalah "alat" untuk masalah
pemecahan (NCTM, 1989, 2000). Sebagai Hodgson (1995) menunjukkan
keluar, ". . . penyelidikan situasi masalah mengarah alami
untuk pembentukan dan penggunaan koneksi. . . . Koneksi
yang. . . komponen integral dari sukses masalah
pemecahan "(hal. 18). Dengan demikian, calon guru nilai tengah
harus siap untuk membuat koneksi antara konten
yang harus dipelajari dan pemahaman siswa mereka.
Meskipun ada beberapa penelitian yang meneliti matematika
koneksi calon guru di SD
tingkat dan menengah (Bartels, 1995; Donigan 1999 ; Evitts,
2005; Hau, 1993; Roddy, 1992; Wood, 1993), ada sedikit
penelitian tentang hubungan matematika yang dibuat oleh calon
guru di tingkat nilai tengah. Secara tradisional, pengukuran
pengetahuan guru telah dinilai
dengan menggunakan variabel seperti kursus, gelar (s) yang diperoleh, sertifikasi
rute, skor Praxis, dan tahun mengajar. Sebagai
hasilnya, bukti empiris membangun koneksi
antara matematika guru pengetahuan mengajar dan
prestasi siswa telah terbatas (Wilson, Floden, &
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: