6A arrest at the G2/M phase due to the inactivation of theCdk1–cyclin  translation - 6A arrest at the G2/M phase due to the inactivation of theCdk1–cyclin  Indonesian how to say

6A arrest at the G2/M phase due to

6A arrest at the G2/M phase due to the inactivation of the
Cdk1

cyclin B1 complex and an increased expression of
the p21 protein in a p53-dependent manner. The same
report demonstrated an increased phosphorylation of the
checkpoint kinases Chk1 and Chk2, which suggested that
HHV-6A infection might activate the DNA damage
response. As this activation was only observed at later time
points (72 h postinfection), however, it is likely that the G2/M
arrest is not a direct result of the activation of DNA
damage-associated protein checkpoint kinases, but possi-
bly due to a later event of virus infection, one that maintains
the inactivation of the Cdk1

cyclin B1 complex and thus the
subsequent cell cycle arrest (Li et al.
2011
). Manipulation of
the cell cycle was also described for HHV-6B (Øster et al.
2005
), and for HHV-6A infection in cord blood mononuclear
cells (De Bolle et al.
2004
), but with different results,
suggesting that the regulatory pathways and mechanisms
induced by HHV-6 infection might be different according to
the type of infected cells. For the HHV-6A virus, it has
been suggested that G2 arrest serves to block the clonal
expansion and proliferation of the anti-HHV-6 virus
specific T cells (Li et al.
2011
). It has also been reported
that noncycling cells are relatively refractory to killing by
cytolytic T cells (Nishioka and Welsh
1994
)andsoHHV-6
mayemployadoublestrategytoavoidbeingkilledby
cytolytic T cells.
The discovery of viral proteins inducing G2/M arrest
raises the pertinent question of how does this arrest
facilitate viral replication. One plausible hypothesis is that
viruses require an intact intracellular organization for their
assembly and egress, and this is lost during mitosis.
DNA damage and viral replication
The checkpoint signaling cascade does not only lead to
arrest of the cell cycle. It can also lead to activation of the
pathway leading to programmed cell death. When the DNA
damage can no longer be repaired, the response may vary
between organisms. Unicellular organisms resume the cell
cycle despite DNA damage. However in multicellular
organisms, the health of the organism takes priority over
an individual cell. The manipulation of the cell cycle by
viruses is closely related to activation of the DNA damage
response, including double-strand break repair pathways.
Viral infection confronts the host cell with large amounts of
exogenous genetic material that might be recognized as
abnormal and damaged DNA and so may precipitate the
premature apoptosis of the virus-infected cells (Weitzman et
al.
2004
). Thus, in order to establish a productive infection,
it is essential that viruses defend themselves from the host
cell DNA damage response machinery. Paradoxically,
recent reports indicate that the DNA damage response
may have a beneficial role in viral replication.
Simian virus 40 replication is dependent on ATM-
mediated phosphorylation of large tumor antigen, an
essential viral protein involved in viral replication (Shi et
al.
2005
). HPV infection also induces an ATM response in
both undifferentiated and differentiated cells. Importantly,
ATM kinase activity is required for viral genome amplifi-
cation in differentiating cells but not for episome mainte-
nance in undifferentiated cells. This suggests that activation
of the DNA damage signaling response by HPV is tailored
to different requirements, depending on the differentiation
stage of the host cell (Moody and Laimins
2009
). Infection
with human parvovirus B19 (B19V), on the other hand,
induces a broad range of DNA damage responses by
phosphorylation of the three upstream kinases: ATM, ATR,
and DNA-PKcs. Disruption of either the ATR or DNA-
PKcs, but not ATM, signaling pathway significantly
reduced the efficiency of B19V replication without affect-
ing the cell cycle arrest characteristic of B19V infection,
indicating that a DDR-independent checkpoint is responsi-
ble for the arrest of B19V-infected cells at the G2/M
transition of the cell cycle (Luo et al.
2011
). Adenovirus,
however, has evolved mechanisms to inhibit DNA repair
during infection, by degradation and mislocalization of the
Mre11

Rad50

NBS1 complex, thus preventing activation
of DNA damage checkpoints and viral DNA concatemeri-
zation. The model proposed is that the DNA damage
response results in the masking of the origins of adenovirus
DNA replication such that viral replication proteins are
unable to gain access (Stracker et al.
2002
).
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
6A arrest at the G2/M phase due to the inactivation of theCdk1–cyclin B1 complex and an increased expression ofthe p21 protein in a p53-dependent manner. The samereport demonstrated an increased phosphorylation of thecheckpoint kinases Chk1 and Chk2, which suggested thatHHV-6A infection might activate the DNA damageresponse. As this activation was only observed at later timepoints (72 h postinfection), however, it is likely that the G2/Marrest is not a direct result of the activation of DNAdamage-associated protein checkpoint kinases, but possi-bly due to a later event of virus infection, one that maintainsthe inactivation of the Cdk1–cyclin B1 complex and thus thesubsequent cell cycle arrest (Li et al.2011). Manipulation ofthe cell cycle was also described for HHV-6B (Øster et al.2005), and for HHV-6A infection in cord blood mononuclearcells (De Bolle et al.2004), but with different results,suggesting that the regulatory pathways and mechanismsinduced by HHV-6 infection might be different according tothe type of infected cells. For the HHV-6A virus, it hasbeen suggested that G2 arrest serves to block the clonalexpansion and proliferation of the anti-HHV-6 virusspecific T cells (Li et al.2011). It has also been reportedthat noncycling cells are relatively refractory to killing bycytolytic T cells (Nishioka and Welsh1994)andsoHHV-6mayemployadoublestrategytoavoidbeingkilledbycytolytic T cells.The discovery of viral proteins inducing G2/M arrestraises the pertinent question of how does this arrestfacilitate viral replication. One plausible hypothesis is thatviruses require an intact intracellular organization for theirassembly and egress, and this is lost during mitosis.DNA damage and viral replicationThe checkpoint signaling cascade does not only lead toarrest of the cell cycle. It can also lead to activation of thepathway leading to programmed cell death. When the DNAdamage can no longer be repaired, the response may varybetween organisms. Unicellular organisms resume the cellcycle despite DNA damage. However in multicellularorganisms, the health of the organism takes priority overan individual cell. The manipulation of the cell cycle byviruses is closely related to activation of the DNA damageresponse, including double-strand break repair pathways.Viral infection confronts the host cell with large amounts ofexogenous genetic material that might be recognized asabnormal and damaged DNA and so may precipitate thepremature apoptosis of the virus-infected cells (Weitzman etal.2004). Thus, in order to establish a productive infection,it is essential that viruses defend themselves from the hostcell DNA damage response machinery. Paradoxically,recent reports indicate that the DNA damage responsemay have a beneficial role in viral replication.Simian virus 40 replication is dependent on ATM-mediated phosphorylation of large tumor antigen, anessential viral protein involved in viral replication (Shi etal.2005). HPV infection also induces an ATM response inboth undifferentiated and differentiated cells. Importantly,ATM kinase activity is required for viral genome amplifi-cation in differentiating cells but not for episome mainte-nance in undifferentiated cells. This suggests that activationof the DNA damage signaling response by HPV is tailoredto different requirements, depending on the differentiationstage of the host cell (Moody and Laimins2009). Infectionwith human parvovirus B19 (B19V), on the other hand,induces a broad range of DNA damage responses byphosphorylation of the three upstream kinases: ATM, ATR,and DNA-PKcs. Disruption of either the ATR or DNA-PKcs, but not ATM, signaling pathway significantlyreduced the efficiency of B19V replication without affect-ing the cell cycle arrest characteristic of B19V infection,indicating that a DDR-independent checkpoint is responsi-ble for the arrest of B19V-infected cells at the G2/Mtransition of the cell cycle (Luo et al.2011). Adenovirus,however, has evolved mechanisms to inhibit DNA repairduring infection, by degradation and mislocalization of theMre11–Rad50–NBS1 complex, thus preventing activationof DNA damage checkpoints and viral DNA concatemeri-zation. The model proposed is that the DNA damageresponse results in the masking of the origins of adenovirusDNA replication such that viral replication proteins areunable to gain access (Stracker et al.2002).
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
Penangkapan 6A di G2 / M fase karena inaktivasi dari
Cdk1
-
cyclin B1 kompleks dan peningkatan ekspresi
protein p21 dengan cara yang tergantung-p53. Sama
Laporan menunjukkan sebuah fosforilasi peningkatan dari
checkpoint kinase Chk1 dan Chk2, yang menunjukkan bahwa
infeksi HHV-6A mungkin mengaktifkan kerusakan DNA
respon. Aktivasi ini hanya diamati pada waktu kemudian
poin (72 h postinfection), namun, kemungkinan bahwa G2 / M
penangkapan bukanlah akibat langsung dari aktivasi DNA
kerusakan terkait kinase pos pemeriksaan protein, tapi-kemungkinan
Bly karena acara kemudian infeksi virus, salah satu yang mempertahankan
inaktivasi dari Cdk1
-
cyclin B1 kompleks dan dengan demikian
penangkapan siklus sel berikutnya (Li et al. 2011). Manipulasi siklus sel juga dijelaskan untuk HHV-6B (Øster et al. 2005), dan untuk infeksi HHV-6A di mononuklear darah tali sel (De Bolle et al. 2004), tetapi dengan hasil yang berbeda, menunjukkan bahwa jalur peraturan dan mekanisme yang disebabkan oleh infeksi HHV-6 mungkin berbeda sesuai dengan jenis sel yang terinfeksi. Untuk virus HHV-6A, telah diduga bahwa penangkapan G2 berfungsi untuk memblokir klonal ekspansi dan proliferasi anti-HHV-6 virus sel T spesifik (Li et al. 2011). Ini juga telah melaporkan bahwa sel-sel noncycling relatif tahan api untuk membunuh oleh sel T sitolitik (Nishioka dan Welsh 1994) andsoHHV-6 mayemployadoublestrategytoavoidbeingkilledby sel T sitolitik. Penemuan protein virus menginduksi G2 / M penangkapan menimbulkan pertanyaan terkait tentang bagaimana penangkapan ini memfasilitasi replikasi virus. Salah satu hipotesis yang masuk akal adalah bahwa virus memerlukan organisasi intraseluler utuh untuk mereka perakitan dan egress, dan ini hilang selama mitosis. Kerusakan DNA dan replikasi virus The pos pemeriksaan sinyal kaskade tidak hanya menyebabkan penangkapan siklus sel. Hal ini juga dapat menyebabkan aktivasi dari jalur menyebabkan kematian sel terprogram. Ketika DNA kerusakan tidak bisa lagi diperbaiki, respon dapat bervariasi antara organisme. Organisme uniseluler melanjutkan sel siklus meskipun kerusakan DNA. Namun di multiseluler organisme, kesehatan organisme mengambil prioritas di atas sel individu. Manipulasi siklus sel oleh virus terkait erat dengan aktivasi kerusakan DNA tanggapan, termasuk jalur istirahat perbaikan untai ganda. Infeksi virus menghadapkan sel inang dengan jumlah besar materi genetik eksogen yang mungkin diakui sebagai abnormal dan rusak DNA dan sehingga dapat mengendapkan apoptosis dini dari sel yang terinfeksi virus (Weitzman et al. 2004). Dengan demikian, dalam rangka membangun infeksi produktif, adalah penting bahwa virus mempertahankan diri dari host mesin respon kerusakan DNA sel. Paradoksnya, laporan terbaru menunjukkan bahwa respon kerusakan DNA mungkin memiliki peran bermanfaat dalam replikasi virus. Simian virus 40 replikasi tergantung pada ATM- fosforilasi dimediasi antigen tumor besar, sebuah protein virus penting yang terlibat dalam replikasi virus (Shi et al. 2005) . Infeksi HPV juga menginduksi respon ATM di kedua sel berdiferensiasi dan dibedakan. Yang penting, aktivitas kinase ATM diperlukan untuk genom virus amplifi- kation dalam membedakan sel tetapi tidak untuk episom pemeli- nance di sel dibeda-bedakan. Hal ini menunjukkan bahwa aktivasi dari kerusakan DNA respon sinyal oleh HPV disesuaikan dengan kebutuhan yang berbeda, tergantung pada diferensiasi tahap sel inang (Moody dan Laimins 2009). Infeksi dengan Parvovirus B19 manusia (B19V), di sisi lain, menginduksi berbagai respon kerusakan DNA oleh fosforilasi dari tiga kinase hulu: ATM, ATR, dan DNA-PKCS. Gangguan baik ATR atau DNA PKCS, tapi tidak ATM, jalur sinyal secara signifikan mengurangi efisiensi replikasi B19V tanpa terkena dampaknya ing karakteristik penangkapan siklus sel infeksi B19V, menunjukkan bahwa pos pemeriksaan DDR-independen jawab ble untuk penangkapan sel B19V terinfeksi di G2 / M transisi dari siklus sel (Luo et al. 2011). Adenovirus, bagaimanapun, telah berkembang mekanisme untuk menghambat perbaikan DNA selama infeksi, oleh degradasi dan mislocalization dari Mre11 - ialah RAD50 - NBS1 kompleks, sehingga mencegah aktivasi dari pos pemeriksaan kerusakan DNA dan DNA virus concatemeri- lisasi. Model yang diusulkan adalah bahwa kerusakan DNA hasil respon dalam masking dari asal-usul adenovirus replikasi DNA sehingga protein virus replikasi yang tidak dapat mendapatkan akses (Stracker et al. 2002).


























































































Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: