Results (
Indonesian) 1:
[Copy]Copied!
Meningkatnya pengakuan biomassa membakar sebagai luas dansignifikan agen perubahan dalam sistem bumi telah menyebabkan berkelanjutanperlu untuk jangka panjang data api di daerah, kontinental, dan globalskala. Dalam bagian permintaan ini telah bertemu dengan tubuh yang besarapi aktif berbasis satelit pengamatan yang dibuat menggunakan sejumlahkasar dan media-resolusi sensor, awalnya maju sangatResolusi tinggi Radiometer (AVHRR) (Dozier, 1981; Matson danDozier, 1981), diikuti oleh lingkungan operasional geostasionerSatelit (berjalan) Imager (Prins dan Menzel, 1992), pertahananSistem Linescan Meteorological satelit Program (hari) operasional(OLS) (Elvidge et al., 1996), sepanjang jalur pemindaian Radiometer(ATSR) (Arino dan Rosaz, 1999), terlihat dan inframerah Scanner (VIRS)(Giglio et al., 2000), resolusi moderat Imaging SpectroRadiometer (Misr)(MODIS) (Keadilan et al., 2002), dan berputar ditingkatkanTerlihat dan inframerah Imager (SEVIRI) (Roberts et al, 2005).Sementara aktif api produk menangkap informasi tentang lokasidan waktu api pembakaran pada saat jembatan satelit, merekaumumnya tidak mengizinkan daerah dibakar menjadi dapat diandalkan (atau setidaknya langsung)perkiraan (Scholes et al, 1996; Eva dan Lambin, 1998b; Kasischkeet al., 2003; Giglio et al., 2006). Namun dapat diandalkan, besar-besaran (biasanya global)Peta wilayah terbakar penting untuk banyak aplikasi, khususnyaperkiraan pyrogenic emisi gas dan aerosol. Kebutuhan inihas consequently prompted the development of numerous satellitebasedmethods for mapping burned areas, the majority of whichoperate without exploiting active fire information. Kasischke andFrench (1995), for example, applied differencing to 15-day AVHRRNormalized Difference Vegetation Index (NDVI) composite imagery todetect burns in Alaskan boreal forests during 1990 and 1991.Fernández et al. (1997) mapped large forest fires in Spain during1993 and 1994 with 10-day AVHRR maximum-NDVI composites usingseparate regression and differencing techniques. Eva and Lambin(1998a) mapped burns in central Africa during the 1994–1995 dryseason using 1-km ATSR imagery by matching decreases in shortwaveinfrared (SWIR) reflectance with increases in surface temperature.Barbosa et al. (1999) used daily 5-km AVHRR imagery to mapburned areas in Africa based on changes occurring in reflectance,brightness temperature, and a vegetation index (VI). Pereira et al.(2000) used classification trees to map burned area in central Africaand Iberia with AVHRR thermal, albedo, and VI imagery; Stroppianaet al. (2003) applied a similar technique in Australian woodlandsavannas using 10-day SPOT VEGETATION (VGT) composites. Fraser etal. (2003) developed an approach for mapping burned boreal forest atthe continental scale using 10-day VGT VI composites and a logisticregression model. The GLOBSCAR global burned area product (Simonet al., 2004) was produced for the year 2000 using two differentalgorithms, one contextual and one fixed-threshold, applied to ATSR-2and AATSR imagery. The GBA-2000 global burned area product wasindependently produced by Tansey et al. (2004) using a combinationRemote Sensing of Environment 113 (2009) 408–420⁎ Corresponding author. Science Systems and Applications, Inc., Lanham, Maryland,USA.E-mail address: louis_giglio@ssaihq.com (L. Giglio).0034-4257/$ – see front matter © 2008 Elsevier Inc. All rights reserved.doi:10.1016/j.rse.2008.10.006Contents lists available at ScienceDirectRemote Sensing of Environmentjournal homepage: www.elsevier.com/locate/rseof nine different regional algorithms applied to 1-km VGT dailysurface reflectance imagery. Roy et al. (2002, 2005b) developed apredictive bi-directional reflectance modeling approach to mapburned areas on a daily basis using 500-m MODIS imagery. Mostrecently, Tansey et al. (2008) modified one of the regional GBA-2000algorithms for global use to produce the L3JRC 1-km global burnedarea product for 2000–2007.Although the majority of existing burned-area mapping methodsdo not exploit active fire information, a minority are hybrid algorithmswhich supplement the “standard” remotely-sensed indicators used forburn mapping (surface reflectance, surface temperature, NDVI, etc.)with active fire maps. Roy et al. (1999), for example, used AVHRR datato map savanna burns in southern Africa from a temporal composite ofthe range of a spectral index. Burned and unburned pixels weredifferentiated using a threshold based on the mean and standarddeviation of the range of this index for pixels where active fires weredetected. Similarly, in the Fraser et al. (2000) HANDS algorithm, whichwas designed for mapping boreal forest burns with AVHRR data, theexpected change in successive 10-day NDVI composites for burnedpixels was derived using an AVHRR active fire mask. A similar methodwas developed by Pu et al. (2004) for mapping burned areas inCalifornia, again with AVHRR data. Georg
Being translated, please wait..
