iii. Use a global constant to fill in the missing valueiv. Use the att translation - iii. Use a global constant to fill in the missing valueiv. Use the att Indonesian how to say

iii. Use a global constant to fill

iii. Use a global constant to fill in the missing value
iv. Use the attribute mean to fill in the missing value
v. Use the attribute mean for all samples belonging to
the same class.
vi.Use the most probable value to fill in the missing
value
b) Noisy data:
i. Binning
ii. Clustering
iii. Regression
c) Inconsistent data
2) Data Integration and Data Transformation
a) Data Integration
b) Data Transformation
i.Smoothing
ii.Aggregation
iii.Generalization
iv.Normalization
v. Attribute construction
3) Data reduction
a) Data cube aggregation
b) Attribute subset selection
c) Dimensional reduction .
d) Data Sampling.
e) Numerosity reduction
f) Discretization and concept hierarchy generation
1) DATA CLEANING
Real world data tend to be in complete, noisy and inconsistent
.data cleaning routines attempts to fill in missing values,
smooth out noise while identifying outliers, and correct
inconsistencies in the data.[2]
a)Ways for handling missing values:
a. Ignore the tuple: this is usually done when class label is
missing. This method is not very effective, unless tuple
contains several attributes with missing values. It is especially
poor when the percentage of missing values per attributes
varies considerably.
b. Fill in the missing value manually: this approach is time
consuming and may not be feasible given a large data set with
missing values.
c. Use a global constant to fill in the missing value: replace all
missing attribute values by the same constant, such as label like
“unknown”. if missing value are replaced by ,say unknown
then the mining program may mistakenly think that they form
an interesting concept ,since they all have a value common –
that of “unknown”. Hence, although this method is simple, it is
not foolproof.
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
iii. Use a global constant to fill in the missing valueiv. Use the attribute mean to fill in the missing valuev. Use the attribute mean for all samples belonging tothe same class.vi.Use the most probable value to fill in the missingvalueb) Noisy data:i. Binningii. Clusteringiii. Regressionc) Inconsistent data2) Data Integration and Data Transformationa) Data Integrationb) Data Transformationi.Smoothingii.Aggregationiii.Generalizationiv.Normalizationv. Attribute construction3) Data reductiona) Data cube aggregationb) Attribute subset selectionc) Dimensional reduction .d) Data Sampling.e) Numerosity reductionf) Discretization and concept hierarchy generation1) DATA CLEANINGReal world data tend to be in complete, noisy and inconsistent.data cleaning routines attempts to fill in missing values,smooth out noise while identifying outliers, and correctinconsistencies in the data.[2]a)Ways for handling missing values:a. Ignore the tuple: this is usually done when class label ismissing. This method is not very effective, unless tuplecontains several attributes with missing values. It is especiallypoor when the percentage of missing values per attributesvaries considerably.b. Fill in the missing value manually: this approach is timeconsuming and may not be feasible given a large data set withmissing values.c. Use a global constant to fill in the missing value: replace allmissing attribute values by the same constant, such as label like“unknown”. if missing value are replaced by ,say unknown
then the mining program may mistakenly think that they form
an interesting concept ,since they all have a value common –
that of “unknown”. Hence, although this method is simple, it is
not foolproof.
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
aku aku aku. Gunakan konstan global untuk mengisi nilai yang hilang
iv. Gunakan atribut berarti untuk mengisi nilai yang hilang
v. Gunakan atribut berarti untuk semua sampel
milik. Kelas yang sama
vi.Use nilai yang paling mungkin untuk mengisi missing
value
b) Data Bising:
i. Binning
ii. Clustering
iii. Regresi
c) Data yang tidak konsisten
2) Integrasi Data dan Transformasi Data
a) Integrasi data
b) Transformasi data
i.Smoothing
ii.Aggregation
iii.Generalization
iv.Normalization
v. Atribut konstruksi
pengurangan 3) Data
a) Data kubus agregasi
b) atribut bagian pilihan
c) pengurangan Dimensi.
D) Data Sampling.
E) pengurangan Numerosity
f) Discretization dan hirarki konsep generasi
1) DATA PEMBERSIH
data dunia nyata cenderung secara lengkap, berisik dan tidak konsisten
membersihkan DATA rutinitas mencoba untuk mengisi nilai-nilai yang hilang,
menghaluskan suara sementara mengidentifikasi outliers, dan benar
inkonsistensi dalam data [2].
a) Cara untuk menangani nilai-nilai yang hilang:
a. Abaikan tupel: ini biasanya dilakukan ketika label kelas
hilang. Metode ini sangat tidak efektif, kecuali tuple
berisi beberapa atribut dengan nilai-nilai yang hilang. Hal ini terutama
miskin ketika persentase nilai yang hilang per atribut
bervariasi.
B. Isikan nilai yang hilang secara manual: pendekatan ini adalah waktu
memakan dan mungkin tidak layak diberi data yang besar set dengan
nilai-nilai yang hilang.
C. Gunakan konstan global untuk mengisi nilai yang hilang: mengganti semua
nilai atribut hilang oleh konstan yang sama, seperti label seperti
"tidak diketahui". jika nilai yang hilang diganti dengan, mengatakan tidak diketahui
maka program pertambangan mungkin keliru berpikir bahwa mereka membentuk
sebuah konsep menarik, karena mereka semua memiliki nilai umum -
yang dari "tidak diketahui". Oleh karena itu, meskipun metode ini sederhana, itu
tidak mudah.
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: