5. DiscussionThe regionally adjustable burned area algorithm presents  translation - 5. DiscussionThe regionally adjustable burned area algorithm presents  Indonesian how to say

5. DiscussionThe regionally adjusta

5. Discussion
The regionally adjustable burned area algorithm presents an
innovative approach which focuses on unique combinations of
vegetative, fire progression, and post-fire recovery characteristics
for various biomes. The approach is straightforward and
repeatable. Although the algorithm is not fully automated it
does not rely on the analyst's knowledge of the regional
specifics and eliminates subjectivity of threshold selection. The
results of the MODIS burned area mapping approach across the
three test ecosystems are encouraging (Fig. 9). The flexibility of
the algorithm allows for high levels of mapping accuracy across
different ecosystems ranging from boreal forests to semi-arid
grass and shrub lands with estimates falling within 15% of the
validation base. The high accuracy of algorithm performance
within individual regions and ecosystems also allows for crosscomparison
of burned areas between regions and biomes of
interest. In addition to the high accuracy of burned area
estimates, the product demonstrated high levels of geographic
accuracy for large fire scars (Kappa 0.76–0.79). The geographic
accuracy for smaller fire scars was lower, but this is partially
explained by the coarse mapping resolution (500 m) of the
MODIS burned areas. Among the most common sources of
error introduced by the coarse resolution instruments are edge
effects, where a burned MODIS pixel at the edge of the fire scar
covers a combination of burned and unburned pixels in the
validation dataset. The limitations arising from the instruments'
spatial resolution are amplified by the heterogeneity of burned
areas with numerous unburned inclusions within the fire scars
which results in a considerable overestimate of the burned area
(Loboda & Csiszar, 2005).
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
5. DiscussionThe regionally adjustable burned area algorithm presents aninnovative approach which focuses on unique combinations ofvegetative, fire progression, and post-fire recovery characteristicsfor various biomes. The approach is straightforward andrepeatable. Although the algorithm is not fully automated itdoes not rely on the analyst's knowledge of the regionalspecifics and eliminates subjectivity of threshold selection. Theresults of the MODIS burned area mapping approach across thethree test ecosystems are encouraging (Fig. 9). The flexibility ofthe algorithm allows for high levels of mapping accuracy acrossdifferent ecosystems ranging from boreal forests to semi-aridgrass and shrub lands with estimates falling within 15% of thevalidation base. The high accuracy of algorithm performancewithin individual regions and ecosystems also allows for crosscomparisonof burned areas between regions and biomes ofinterest. In addition to the high accuracy of burned areaestimates, the product demonstrated high levels of geographicaccuracy for large fire scars (Kappa 0.76–0.79). The geographicaccuracy for smaller fire scars was lower, but this is partiallyexplained by the coarse mapping resolution (500 m) of theMODIS burned areas. Among the most common sources oferror introduced by the coarse resolution instruments are edgeeffects, where a burned MODIS pixel at the edge of the fire scarmencakup kombinasi piksel dibakar dan terbakar didataset validasi. Keterbatasan yang timbul dari instrumen'keterlaraian diperkuat oleh heterogenitas dari dibakardaerah dengan banyak inklusi terbakar dalam api bekas lukayang menghasilkan cukup menaksir terlalu tinggi dari area yang terbakar(Loboda & Csiszar, 2005).
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
5. Diskusi
Algoritma area yang terbakar disesuaikan regional menyajikan sebuah
pendekatan inovatif yang berfokus pada kombinasi unik dari
vegetatif, perkembangan api, dan karakteristik pemulihan pasca-api
untuk berbagai bioma. Pendekatan ini mudah dan
berulang. Meskipun algoritma ini tidak sepenuhnya otomatis itu
tidak bergantung pada pengetahuan analis dari daerah
spesifik dan menghilangkan subjektivitas seleksi ambang batas. The
Hasil MODIS dibakar pendekatan wilayah pemetaan seluruh
tiga ekosistem uji mendorong (Gambar. 9). Fleksibilitas
algoritma memungkinkan untuk tingkat akurasi yang tinggi pemetaan di
ekosistem yang berbeda mulai dari hutan boreal ke semi-kering
rumput dan semak lahan dengan perkiraan yang berada dalam 15% dari
dasar validasi. Akurasi yang tinggi kinerja algoritma
dalam wilayah individu dan ekosistem juga memungkinkan untuk crosscomparison
dari daerah yang terbakar antara daerah dan bioma dari
bunga. Selain akurasi yang tinggi dari daerah yang terbakar
perkiraan, produk menunjukkan tingginya tingkat geografis
akurasi untuk bekas luka api besar (Kappa 0,76-0,79). Geografis
akurasi untuk bekas luka api kecil lebih rendah, tapi ini sebagian
dijelaskan oleh resolusi pemetaan kasar (500 m) dari
MODIS dibakar daerah. Di antara sumber yang paling umum dari
kesalahan yang diperkenalkan oleh instrumen resolusi kasar adalah tepi
efek, di mana MODIS pixel dibakar di tepi bekas luka api
mencakup kombinasi terbakar dan tidak terbakar piksel dalam
dataset validasi. Keterbatasan yang timbul dari instrumen '
resolusi spasial diperkuat oleh heterogenitas dibakar
daerah dengan berbagai inklusi tidak terbakar dalam bekas kebakaran
yang menghasilkan terlalu tinggi besar area yang terbakar
(Loboda & Csiszar, 2005).
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: