Table 2: Test Items SpecificationsContent area Remembering Understandi translation - Table 2: Test Items SpecificationsContent area Remembering Understandi Indonesian how to say

Table 2: Test Items SpecificationsC

Table 2: Test Items Specifications

Content area Remembering Understanding Thinking Total
The sine and cosine rules 2 2 1 5
Angles of elevation and depression 3 3 2 8
Height and distances 2 3 3 8
Bearing and distances 2 1 2 5

Angles between two places on the
Earth’s surface

2 2 2 6

Shortest distance between two points 3 3 2 8
Total 14 14 12 40


2.7. Method of Data Collection

The 72-item SETES-M that emerged after the preliminary factorial validation was used for data collection. Copies of the 72-item SETES-M were administered to the sample drawn for the study. Thereafter, the MAT was administered to collect data on the dependent measure. The data collection was carried out with the help of the mathematics teachers in the selected schools. The total period of
the data collection spanned six weeks.

2.8. Data Analysis

Research question 1 was answered using factor analysis with varimax rotation. Question 2 was answered using Cronbach coefficient alpha while questions 3 and 4 were answered using multiple regression analysis.



3. RESULTS

Factor analysis (Principal components with varimax rotation) was performed on the responses to the SETES-M, treating males and females separately. Since both male and female teaching effectiveness rating profiles showed pattern and magnitude similarities, the data were combined. The subsequent factor analysis produced seven meaningful factors with eigen values greater than unity, which accounted for a total of 56.7% of variance. These factors had interpretable structures with factor loadings ranged from 0.36 to 0.58.

38

Adeneye Olarewaju Awofala / Cypriot Journal of Educational Sciences. 7,1 (2012) 33-44



Table 3: Item Loadings of 0.36 or above on principal factors: Factors 1 to 7

Factor Name Loading Scale Item
Teaching Skills 0.38 Arrange his/her work clearly on the chalkboard
0.42 Use instructional aids such as charts, posters to make lesson enjoyable
0.36 Use class time effectively
0.37 Write legibly on the chalkboard
0.39 Speak audibly and communicate mathematical information effectively
0.41 Explain clearly and give notes
0.40 Distribute questions evenly to all members of the class
0.43 Use body movements to demonstrate lessons
0.55 Ask questions always and Listen well to students’ questions
Personal Attributes 0.41 Be jovier, crack jokes and have a good sense of humour
0.52 Dress well and neatly
0.47 Be regular and punctual to class
0.56 Be diligent and hardworking
0.39 Always consider the views of others
0.42 Not easily get provoked over any error made by students
0.58 Not give up easily while solving a problem
0.48 Be dynamic and energetic person
0.49 Treat students with courtesy and respect
Teaching Principles 0.93 State objectives for each class session
0.41 Present lessons logically and sequentially
0.52 Display an interesting style of presentation
0.54 Start lesson from simple and known aspects to complex and unknown aspects
0.49 Be good at facilitating group discussion among students
0.50 Examine students on what is emphasized in class
0.53 Praise good work
0.36 Give students adequate assignments after each lesson

Knowledge of the
Students










Interpersonal
Relations

0.51 Be concerned about students’ individual differences

0.47 Not fail to detect indisciplinary acts of students
0.42 Identify difficult areas for students and take care of them
0.56 Identify students’ learning problems and errors and give remedies
0.47 Posses solutions to individual student and group problems
0.38 Be able to match students’ personality traits with teaching methods during teaching
0.56 Be able to provide adequate information on students’ learning behaviour
0.55 Keep continuous assessment records of all students
0.38 Relate to students as individuals

0.41 Invite students to share their knowledge and experience
0.42 Encourage students to help one another
0.49 Feel concerned over students’ failure to perform well
0.43 Be very approachable and not strict
0.51 Have a cordial relationship with all students
0.47 Be able to share his/her wealth of experience with students on both academic and nonacademic matters
0.53 Treat every student in the class equally

Mastery of Content 0.49 Present origin of ideas and concepts
0.52 Present current developments and applications relevant to the content of the lesson

39

Adeneye Olarewaju Awofala / Cypriot Journal of Educational Sciences. 7,1 (2012) 33-44



0.58 Show a thorough knowledge of the subject matter
0.57 Be confident in teaching and handling many topics in mathematics
0.52 Relate and associate ideas and concepts in mathematics to ideas and
concepts in other
related subject areas
0.49 Be able to give practical example to most problems
0.41 Summarize major points
0.51 Encourage intelligent and independent thought
0.39 Teach without sticking to only one method in
solving problem
Impact on Learning 0.39 Discuss the topics reasonably and confidently with colleagues
0.41 Transfer skills, concepts, rules and principles gained in the topics to
solving true life problems
0.45 Make up my own notes on the topics
0.51 Solve most problems set on the topics during examination
0.39 Score high marks on problems set on the topics during class test
0.38 Recall most of the facts/concepts taught
0.39 Do the assignment given on the topics taught
0.46 See that mathematics is very useful in life
0.52 Being to have interest in pursuing mathematics to the tertiary level
The significantly loading items are presented in Table 3. Loadings ranging from 0.30 to 0.39 may be
considered significant; loadings ranging from 0.40 to 0.49 may be considered more significant and loadings over 0.50 may be considered very significant. The terminal solution of orthogonally rotated factors showed that twelve items had no significant correlation with any of the 7 identified factors thereby making the identification and naming of factors simple. Each of the 7 factors cluster of items were analysed and this resulted in factor’s name being assigned, which best conceptualized each factor’s high loading items.

The items identified that loaded significantly on Factors 1 to 7 were tested for internal reliability. Cronbach’s alpha coefficients of 0.70, 0.83, 0.81, 0.84, 0.79, 0.72 and 0.70 were found for Factors 1, 2, 3,
4, 5, 6 and 7 items for both males and females respectively (p < 0.05 in all cases). Since the SETES-M scale separated into seven latent factors identified to possess minimum of 1.0 eigen values, statistically significantly liable and non-overlapping subscales based on these seven factors were used in subsequent data analyses. The following models were obtained:

f1 = 0.38d11 + 0.42 d12 + 0.36 d13 + 0.37d14 + 0.39d15 + 0.41d16 + 0.40d17 + 0.43d18 + 0.55d19

f2 = 0.41d21 + 0.52d22 + 0.47 d23 + 0.56d24 + 0.39d25 + 0.42d26 + 0.58d27 + 0.48d28 + 0.49 d29

f3 = 0.39d31 + 0.41d32 + 0.52d33 + 0.54d34 + 0.49 d35 + 0.50 d36 + 0.53 d37 + 0.36 d38

f4 = 0.51d41 + 0.47d42 + 0.42d43 + 0.56d44 + 0.47 d45 + 0.38 d46 + 0.56 d47 + 0.55 d48

f5 = 0.38d51 + 0.41d52 + 0.42d53 + 0.49d54 + 0.43 d55 + 0.51 d56 + 0.47d57 +0.53 d58

f6 = 0.49d61 + 0.52d62 +0.58d63 +0.57d64 + 0.52d65 + 0.49d66 + 0.41d67 + 0.51d68 +0.39 d69

f7 = 0.39d71 +0.41d72 +0.45d73 + 0.51d74 + 0.39d75 +0.38d76 +0.39 d77 + 0.46 d78 + 0.52 d79

Where dij are the items that loaded significantly high on factor i, i and j are unique for each model because no item indicates a factorial complexity of two or more. The factors fi were than regressed on the students’ mathematics scores.

Table 4: Summary of Regression Analysis on Students’ Evaluation of Teaching Effectiveness Factors combined
Multiple R R2 Adjusted R2 Std error of estimate
0.705 0.497 0.494 1.898
40

Adeneye Olarewaju Awofala / Cypriot Journal of Educational Sciences. 7,1 (2012) 33-44



Table 4 showed that the seven factors of students’ evaluation of teaching effectiveness jointly
correlate positively with achievement in Mathematics (R = 0.705). This shows that the factors were quite relevant towards the determination of achievement in Mathematics. The table also revealed an adjusted
R2 value of 0.494 which indicates that 49.4% of the total variance in student achievement in
Mathematics is accounted for by the seven factors of students’ evaluation of teaching effectiveness, taken together. The remaining 50.6% could be due to the residuals and other factors not included in this study. The significance or otherwise of the R value is tested on Table 5.

Table 5: Analysis of Variance of Regression on Students’ Evaluation of Teaching Effectiveness

Source of
Variance

Sum of Squares Df Mean Square F Sig

Regression 1130.482 7 161.50 64.86 .000*
Residual 2561.342 1,030 2.49
Total 3691.824 1,037
*Significant at p < 0.05

From Table 5, the R value obtained in the regression analysis is significant (F (7, 1030) = 64.86; p <
0.05). This implies that the R value of 0.705 is not due to chance. Hence, it is found that there is a
significant composite effect of the students’ evaluation of teaching effectiveness factors on students’
achievement in Mathematics.

Table 6. Coefficients of the Regression Models of the Relative Effects of Students’ Evaluation of Teaching
Effectiveness Factors on Achievement in Mathematics.


Model Unstandardized coefficients


Standardized coefficients


Rank T Sig

ß Std error Beta
(Constant) 2.351 0.372 6.320 0.000
FACTOR 1 0.653 0.081 0.121 2nd 8.021 0.000*
FACTOR 2 0.831 0.074 0.314 1st 11.17 0.000*
FACTOR 3 0.746 0.078 0.083 4th 9.24 0.000*
FACTOR 4 -0.568 0.091 -0.068 7th -6.31 0.002*
FACTOR 5 -0.467 0.110 -0.051 5th -4.21 0.012*
FACTOR 6 0.378
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
Tabel 2: Tes item spesifikasiWilayah konten mengingat pemahaman pemikiran TotalSinus dan kosinus aturan 2 2 1 5Sudut elevasi dan depresi 3 3 2 8Tinggi dan jarak 2 3 3 8Bantalan dan jarak 2 1 2 5 Sudut antara dua tempat padaPermukaan bumi 2 2 2 6 Terpendek jarak antara dua titik 3 3 2 8Total 14 14 12 402.7. metode pengumpulan Data72-item SETES-M yang muncul setelah validasi faktorial awal digunakan untuk pengumpulan data. Salinan 72-item SETES-M diberikan untuk sampel diambil untuk penelitian. Setelah itu, tikar diberikan untuk mengumpulkan data pada ukuran tergantung. Pengumpulan data dilakukan dengan bantuan guru matematika di sekolah-sekolah. Periode total pengumpulan data membentang enam minggu.2.8. analisis dataPertanyaan penelitian 1 dijawab menggunakan analisis faktor dengan rotasi varimax. Pertanyaan 2 dijawab menggunakan Cronbach koefisien alpha sementara pertanyaan 3 dan 4 terjawab menggunakan analisis regresi.3. HASILFaktor Analisis (kepala komponen dengan varimax rotasi) dilakukan pada tanggapan untuk SETES-M, memperlakukan laki-laki dan perempuan secara terpisah. Karena pria dan wanita yang mengajar efektivitas penilaian profil menunjukkan kesamaan-kesamaan pola dan besarnya, data ini digabungkan. Analisis faktor berikutnya diproduksi tujuh bermakna faktor dengan nilai-nilai eigen yang lebih besar dari kesatuan, yang menyumbang total 56,7% dari varians. Faktor-faktor ini mempunyai struktur ditafsirkan dengan faktor tas berkisar dari 0,36 untuk 0,58.38 Adeneye Olarewaju Awofala / Siprus jurnal ilmu pendidikan. 7,1 (2012) 33-44Tabel 3: Item tas 0,36 atau di atas pada faktor-faktor utama: faktor 1 sampai 7Faktor nama Loading skala ItemKeterampilan mengajar 0.38 mengatur pekerjaannya dengan jelas pada papan tulis0,42 menggunakan alat bantu pengajaran seperti grafik, poster untuk membuat pelajaran yang menyenangkanPenggunaan 0.36 kelas waktu secara efektif0.37 tulislah dengan ballpoint warna pada papan tulis0.39 berbicara terdengar dan mengkomunikasikan informasi matematika efektif0,41 menjelaskan secara jelas dan memberikan catatanPertanyaan mendistribusikan 0.40 merata kepada semua anggota kelas0,43 gerakan tubuh digunakan untuk menunjukkan pelajaran0,55 selalu bertanya dan baik mendengarkan pertanyaan siswaAtribut pribadi 0,41 akan jovier, lelucon dan memiliki selera humor yang baik0.52 berpakaian baik dan rapi0,47 menjadi teratur dan tepat waktu untuk kelas0.56 menjadi rajin dan pekerja keras0.39 selalu mempertimbangkan pandangan orang lain0,42 tidak mudah mendapatkan terpancing atas kesalahan yang dibuat oleh siswa0,58 tidak gampang menyerah sambil memecahkan masalah0,48 menjadi orang yang enerjik0.49 memperlakukan mahasiswa dengan sopan dan hormatPrinsip-prinsip 0.93 negara tujuan-tujuan pengajaran untuk setiap sesi kelasSekarang 0,41 pelajaran secara logis dan secara berurutan0.52 menampilkan gaya presentasi menarik0.54 pelajaran mulai dari aspek sederhana dan dikenal aspek kompleks dan tidak diketahui0.49 menjadi baik memfasilitasi diskusi kelompok antara mahasiswa0.50 siswa memeriksa apa ditekankan di kelas0,53 memuji pekerjaan baik0.36 memberikan siswa tugas memadai setelah setiap pelajaran PengetahuanSiswaInterpersonalHubungan 0,51 khawatir tentang perbedaan individual siswa0,47 tidak gagal untuk mendeteksi indisciplinary tindakan siswa0,42 mengidentifikasi daerah yang sulit bagi siswa dan merawat mereka0.56 mengidentifikasi siswa belajar masalah dan kesalahan dan memberikan obat0.47 solusi dimiliki siswa individu dan kelompok masalah0.38 dapat mencocokkan ciri-ciri kepribadian siswa dengan metode pengajaran selama pengajaran0.56 dapat memberikan informasi yang memadai pada siswa belajar perilaku0,55 menyimpan catatan penilaian terus-menerus dari semua mahasiswa0.38 berhubungan dengan siswa sebagai individu0,41 mengundang siswa untuk berbagi pengetahuan dan pengalaman0,42 mendorong siswa untuk membantu satu sama lain0.49 merasa prihatin atas mahasiswa kegagalan untuk melakukan dengan baik0,43 menjadi sangat didekati dan tidak ketat0,51 memiliki hubungan yang baik dengan semua siswa0,47 dapat berbagi harta kekayaannya pengalaman dengan siswa mengenai masalah-masalah akademik maupun nonacademic0,53 memperlakukan setiap siswa di kelas yang sama Penguasaan asal konten 0.49 hadir ide-ide dan konsep0.52 perkembangan terkini yang hadir dan aplikasi yang relevan dengan konten pembelajaran39 Adeneye Olarewaju Awofala / Siprus jurnal ilmu pendidikan. 7,1 (2012) 33-44 0,58 menunjukkan pengetahuan menyeluruh subyek 0,57 menjadi percaya diri dalam mengajar dan penanganan banyak topik dalam matematika 0.52 berhubungan dan menghubungkan ide-ide dan konsep-konsep matematika untuk ide-ide dan konsep-konsep lain bidang subyek terkait 0.49 dapat memberikan contoh praktis untuk kebanyakan masalah 0,41 merangkum poin utama 0,51 mendorong pemikiran cerdas dan independen 0.39 mengajar tanpa menempel hanya satu metode dalam pemecahan masalahDampak pada belajar 0.39 membahas topik-topik yang cukup dan percaya diri dengan rekan-rekan 0,41 transfer keterampilan, konsep, aturan dan prinsip-prinsip yang diperoleh dalam topik untuk memecahkan masalah-masalah kehidupan sejati 0,45 membuat catatan saya sendiri pada topik 0,51 memecahkan sebagian besar masalah terletak pada topik selama pemeriksaan 0.39 Skor nilai tinggi pada masalah terletak pada topik selama tes kelas 0.38 ingat sebagian besar fakta/konsep yang diajarkan 0.39 melakukan tugas yang diberikan pada topik-topik yang diajarkan 0,46 melihat bahwa matematika sangat berguna dalam kehidupan 0.52 menjadi memiliki minat dalam mengejar matematika ke tingkat tersierSecara signifikan pemuatan barang-barang yang disajikan dalam tabel 3. Tas berkisar 0,30 0.39 mungkin dianggap signifikan; tas berkisar 0,40 0.49 dapat dianggap lebih penting dan tas atas 0,50 dapat dianggap sangat signifikan. Solusi terminal faktor orthogonally diputar menunjukkan bahwa dua belas item yang telah ada korelasi signifikan dengan salah satu faktor diidentifikasi 7 sehingga membuat identifikasi dan penamaan faktor-faktor yang sederhana. Masing-masing faktor-faktor 7 cluster item yang dianalisis dan ini mengakibatkan factor yang nama yang diberikan, yang terbaik dikonseptualisasikan setiap faktor tinggi item.Item diidentifikasi yang dimuat secara signifikan pada faktor 1 sampai 7 diuji untuk keandalan internal. Cronbach's alpha koefisien 0,70, 0.83, 0,81, 0,84, 0.79, 0.72 dan 0,70 ditemukan untuk faktor 1, 2, 3,4, 5, 6 dan 7 item untuk lelaki dan perempuan masing-masing (p < 0.05 dalam semua kasus). Karena skala SETES-M dipisahkan menjadi tujuh faktor laten yang diidentifikasi untuk memiliki minimum nilai eigen 1.0, secara statistik signifikan bertanggung jawab dan bebas yang tumpang tindih subscales berdasarkan faktor-faktor ini tujuh yang digunakan dalam analisis data berikutnya. Model berikut yang diperoleh:F1 = 0.38d11 + 0,42 d12 0.36 d13 + 0.37d14 + 0.39d15 + 0.41d16 + 0.40d17 + 0.43d18 + 0.55d19F2 = 0.41d21 + 0.52d22 + 0.47 d23 + 0.56d24 + 0.39d25 + 0.42d26 + 0.58d27 + 0.48d28 + 0.49 d29F3 = 0.39d31 + 0.41d32 + 0.52d33 + 0.54d34 + 0.49 d35 + 0.50 d36 + 0,53 d37 + 0.36 d38F4 = 0.51d41 + 0.47d42 + 0.42d43 + 0.56d44 + 0.47 d45 + 0.38 d46 + 0.56 d47 + 0,55 d48F5 = 0.38d51 + 0.41d52 + 0.42d53 + 0.49d54 + d55 0,43 + 0,51 d56 + 0.47d57 +0.53 d58F6 = 0.49d61 + 0.52d62 + 0.58d63 + 0.57d64 + 0.52d65 + 0.49d66 + 0.41d67 + 0.51d68 +0.39 d69F7 = 0.39d71 + 0.41d72 + 0.45d73 + 0.51d74 + 0.39d75 + 0.38d76 +0.39 d77 + 0,46 d78 + 0.52 d79Mana dij adalah item yang dimuat secara signifikan tinggi pada faktor saya, i dan j unik untuk masing-masing model karena barang tidak menunjukkan kompleksitas faktorial dua atau lebih. Fi faktor itu daripada menyusut pada mahasiswa matematika nilai.Tabel 4: Ringkasan dari analisis regresi pada siswa evaluasi pengajaran efektivitas faktor dikombinasikanBeberapa kesalahan R R2 disesuaikan R2 Std perkiraan0.705 0.497 0.494 1.89840 Adeneye Olarewaju Awofala / Siprus jurnal ilmu pendidikan. 7,1 (2012) 33-44Tabel 4 menunjukkan bahwa tujuh faktor siswa evaluasi pengajaran efektivitas bersamaberkorelasi positif dengan prestasi dalam matematika (R = 0.705). Hal ini menunjukkan bahwa faktor-faktor tersebut cukup relevan terhadap penentuan prestasi di bidang matematika. Tabel juga mengungkapkan disesuaikanNilai R2 0.494 yang menunjukkan bahwa 49.4% dari total varians prestasi siswa di Matematika diperhitungkan untuk tujuh faktor siswa evaluasi pengajaran efektivitas, diambil bersama-sama. Sisa 50.6% bisa karena residu dan faktor lainnya yang tidak termasuk dalam studi ini. Signifikans atau sebaliknya dari nilai R diuji pada Tabel 5.Tabel 5: analisis varians regresi pada siswa evaluasi efektivitas pengajaran SumberVarians Jumlah kotak Df Mean Square F Sig Regresi 1130.482 7 161.50 64.86. 000 *2561.342 sisa 2,49 1.030 Total 3691.824 1,037 * Signifikan di p < 0,05Dari tabel 5, nilai R yang didapatkan dalam analisis regresi signifikan (F (7, 1030) = 64.86; p < 0.05). hal ini menyiratkan bahwa nilai R 0.705 bukanlah kebetulan. Oleh karena itu, itu adalah menemukan bahwa ada Efek signifikan komposit mahasiswa evaluasi pengajaran efektivitas faktor pada siswaprestasi di bidang matematika.Tabel 6. Koefisien dari model-model regresi efek relatif siswa evaluasi pengajaranEfektivitas faktor pada prestasi di bidang matematika. Koefisien Unstandardized model Koefisien standar Peringkat T Sig ß Std kesalahan Beta(Konstan) 2.351 0.372 6.320 0.000FAKTOR 1 0.653 0.081 0.121 0.000* 8.021 2FAKTOR 2 0.831 0.074 0.314 0.000* 11.17 1FAKTOR 3 0.746 0.078 0.083 0.000* 9,24 4FAKTOR 4-0.568 0.091-0.068-6.31 7 0.002*FAKTOR 5-0.467 0.110-0.051 5-4.21 0.012*FAKTOR 6 0.378
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
Table 2: Test Items Specifications

Content area Remembering Understanding Thinking Total
The sine and cosine rules 2 2 1 5
Angles of elevation and depression 3 3 2 8
Height and distances 2 3 3 8
Bearing and distances 2 1 2 5

Angles between two places on the
Earth’s surface

2 2 2 6

Shortest distance between two points 3 3 2 8
Total 14 14 12 40


2.7. Method of Data Collection

The 72-item SETES-M that emerged after the preliminary factorial validation was used for data collection. Copies of the 72-item SETES-M were administered to the sample drawn for the study. Thereafter, the MAT was administered to collect data on the dependent measure. The data collection was carried out with the help of the mathematics teachers in the selected schools. The total period of
the data collection spanned six weeks.

2.8. Data Analysis

Research question 1 was answered using factor analysis with varimax rotation. Question 2 was answered using Cronbach coefficient alpha while questions 3 and 4 were answered using multiple regression analysis.



3. RESULTS

Factor analysis (Principal components with varimax rotation) was performed on the responses to the SETES-M, treating males and females separately. Since both male and female teaching effectiveness rating profiles showed pattern and magnitude similarities, the data were combined. The subsequent factor analysis produced seven meaningful factors with eigen values greater than unity, which accounted for a total of 56.7% of variance. These factors had interpretable structures with factor loadings ranged from 0.36 to 0.58.

38

Adeneye Olarewaju Awofala / Cypriot Journal of Educational Sciences. 7,1 (2012) 33-44



Table 3: Item Loadings of 0.36 or above on principal factors: Factors 1 to 7

Factor Name Loading Scale Item
Teaching Skills 0.38 Arrange his/her work clearly on the chalkboard
0.42 Use instructional aids such as charts, posters to make lesson enjoyable
0.36 Use class time effectively
0.37 Write legibly on the chalkboard
0.39 Speak audibly and communicate mathematical information effectively
0.41 Explain clearly and give notes
0.40 Distribute questions evenly to all members of the class
0.43 Use body movements to demonstrate lessons
0.55 Ask questions always and Listen well to students’ questions
Personal Attributes 0.41 Be jovier, crack jokes and have a good sense of humour
0.52 Dress well and neatly
0.47 Be regular and punctual to class
0.56 Be diligent and hardworking
0.39 Always consider the views of others
0.42 Not easily get provoked over any error made by students
0.58 Not give up easily while solving a problem
0.48 Be dynamic and energetic person
0.49 Treat students with courtesy and respect
Teaching Principles 0.93 State objectives for each class session
0.41 Present lessons logically and sequentially
0.52 Display an interesting style of presentation
0.54 Start lesson from simple and known aspects to complex and unknown aspects
0.49 Be good at facilitating group discussion among students
0.50 Examine students on what is emphasized in class
0.53 Praise good work
0.36 Give students adequate assignments after each lesson

Knowledge of the
Students










Interpersonal
Relations

0.51 Be concerned about students’ individual differences

0.47 Not fail to detect indisciplinary acts of students
0.42 Identify difficult areas for students and take care of them
0.56 Identify students’ learning problems and errors and give remedies
0.47 Posses solutions to individual student and group problems
0.38 Be able to match students’ personality traits with teaching methods during teaching
0.56 Be able to provide adequate information on students’ learning behaviour
0.55 Keep continuous assessment records of all students
0.38 Relate to students as individuals

0.41 Invite students to share their knowledge and experience
0.42 Encourage students to help one another
0.49 Feel concerned over students’ failure to perform well
0.43 Be very approachable and not strict
0.51 Have a cordial relationship with all students
0.47 Be able to share his/her wealth of experience with students on both academic and nonacademic matters
0.53 Treat every student in the class equally

Mastery of Content 0.49 Present origin of ideas and concepts
0.52 Present current developments and applications relevant to the content of the lesson

39

Adeneye Olarewaju Awofala / Cypriot Journal of Educational Sciences. 7,1 (2012) 33-44



0.58 Show a thorough knowledge of the subject matter
0.57 Be confident in teaching and handling many topics in mathematics
0.52 Relate and associate ideas and concepts in mathematics to ideas and
concepts in other
related subject areas
0.49 Be able to give practical example to most problems
0.41 Summarize major points
0.51 Encourage intelligent and independent thought
0.39 Teach without sticking to only one method in
solving problem
Impact on Learning 0.39 Discuss the topics reasonably and confidently with colleagues
0.41 Transfer skills, concepts, rules and principles gained in the topics to
solving true life problems
0.45 Make up my own notes on the topics
0.51 Solve most problems set on the topics during examination
0.39 Score high marks on problems set on the topics during class test
0.38 Recall most of the facts/concepts taught
0.39 Do the assignment given on the topics taught
0.46 See that mathematics is very useful in life
0.52 Being to have interest in pursuing mathematics to the tertiary level
The significantly loading items are presented in Table 3. Loadings ranging from 0.30 to 0.39 may be
considered significant; loadings ranging from 0.40 to 0.49 may be considered more significant and loadings over 0.50 may be considered very significant. The terminal solution of orthogonally rotated factors showed that twelve items had no significant correlation with any of the 7 identified factors thereby making the identification and naming of factors simple. Each of the 7 factors cluster of items were analysed and this resulted in factor’s name being assigned, which best conceptualized each factor’s high loading items.

The items identified that loaded significantly on Factors 1 to 7 were tested for internal reliability. Cronbach’s alpha coefficients of 0.70, 0.83, 0.81, 0.84, 0.79, 0.72 and 0.70 were found for Factors 1, 2, 3,
4, 5, 6 and 7 items for both males and females respectively (p < 0.05 in all cases). Since the SETES-M scale separated into seven latent factors identified to possess minimum of 1.0 eigen values, statistically significantly liable and non-overlapping subscales based on these seven factors were used in subsequent data analyses. The following models were obtained:

f1 = 0.38d11 + 0.42 d12 + 0.36 d13 + 0.37d14 + 0.39d15 + 0.41d16 + 0.40d17 + 0.43d18 + 0.55d19

f2 = 0.41d21 + 0.52d22 + 0.47 d23 + 0.56d24 + 0.39d25 + 0.42d26 + 0.58d27 + 0.48d28 + 0.49 d29

f3 = 0.39d31 + 0.41d32 + 0.52d33 + 0.54d34 + 0.49 d35 + 0.50 d36 + 0.53 d37 + 0.36 d38

f4 = 0.51d41 + 0.47d42 + 0.42d43 + 0.56d44 + 0.47 d45 + 0.38 d46 + 0.56 d47 + 0.55 d48

f5 = 0.38d51 + 0.41d52 + 0.42d53 + 0.49d54 + 0.43 d55 + 0.51 d56 + 0.47d57 +0.53 d58

f6 = 0.49d61 + 0.52d62 +0.58d63 +0.57d64 + 0.52d65 + 0.49d66 + 0.41d67 + 0.51d68 +0.39 d69

f7 = 0.39d71 +0.41d72 +0.45d73 + 0.51d74 + 0.39d75 +0.38d76 +0.39 d77 + 0.46 d78 + 0.52 d79

Where dij are the items that loaded significantly high on factor i, i and j are unique for each model because no item indicates a factorial complexity of two or more. The factors fi were than regressed on the students’ mathematics scores.

Table 4: Summary of Regression Analysis on Students’ Evaluation of Teaching Effectiveness Factors combined
Multiple R R2 Adjusted R2 Std error of estimate
0.705 0.497 0.494 1.898
40

Adeneye Olarewaju Awofala / Cypriot Journal of Educational Sciences. 7,1 (2012) 33-44



Table 4 showed that the seven factors of students’ evaluation of teaching effectiveness jointly
correlate positively with achievement in Mathematics (R = 0.705). This shows that the factors were quite relevant towards the determination of achievement in Mathematics. The table also revealed an adjusted
R2 value of 0.494 which indicates that 49.4% of the total variance in student achievement in
Mathematics is accounted for by the seven factors of students’ evaluation of teaching effectiveness, taken together. The remaining 50.6% could be due to the residuals and other factors not included in this study. The significance or otherwise of the R value is tested on Table 5.

Table 5: Analysis of Variance of Regression on Students’ Evaluation of Teaching Effectiveness

Source of
Variance

Sum of Squares Df Mean Square F Sig

Regression 1130.482 7 161.50 64.86 .000*
Residual 2561.342 1,030 2.49
Total 3691.824 1,037
*Significant at p < 0.05

From Table 5, the R value obtained in the regression analysis is significant (F (7, 1030) = 64.86; p <
0.05). This implies that the R value of 0.705 is not due to chance. Hence, it is found that there is a
significant composite effect of the students’ evaluation of teaching effectiveness factors on students’
achievement in Mathematics.

Table 6. Coefficients of the Regression Models of the Relative Effects of Students’ Evaluation of Teaching
Effectiveness Factors on Achievement in Mathematics.


Model Unstandardized coefficients


Standardized coefficients


Rank T Sig

ß Std error Beta
(Constant) 2.351 0.372 6.320 0.000
FACTOR 1 0.653 0.081 0.121 2nd 8.021 0.000*
FACTOR 2 0.831 0.074 0.314 1st 11.17 0.000*
FACTOR 3 0.746 0.078 0.083 4th 9.24 0.000*
FACTOR 4 -0.568 0.091 -0.068 7th -6.31 0.002*
FACTOR 5 -0.467 0.110 -0.051 5th -4.21 0.012*
FACTOR 6 0.378
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: