The fisheries is one of the key sectors in India with around 6.7 milli translation - The fisheries is one of the key sectors in India with around 6.7 milli Indonesian how to say

The fisheries is one of the key sec

The fisheries is one of the key sectors in India with around 6.7 million people dependent on it for livelihood (GoI, 2001). The sector is undergoing fast transformation, from subsistence level to a multimillion industry. The fish production (both marine and inland) of the country has increased from 0.75 million tonnes in 1950-51 to 6.4 million tonnes in 2003-04 (Narayankumar and Sathiadas, 2006). The marine landings alone were valued at Rs 13019 crores at the landing centre level in 2004, while the value at the final consumer point was estimated at Rs 22,653 crores (Sathiadas, 2005). For the past many years, marine exports have been a substantial
source of foreign-exchange earning to India’s exchequer and hence are accorded utmost priority.
However, the domestic fisheries marketing system in the country has long been neglected due to various reasons. It deserves its due share primarily because around 85 per cent of the total fish production is consumed within the country. It is, therefore, important to develop a strong network of efficient marketing system within the country so that a substantial chunk of country’s fish production is efficiently managed and delivered to the consuming
masses, while not negating the due share of the fishermen. Essentially, an efficient marketing system is one where there is a perfect market integration and full price transmission, with instantaneous price adjusment to changes from within or outside the
system. Such a system would enable the producers, middlemen and consumers in the marketing chain
to derive maximum gains. It would also help in elimination of unprofitable arbitrage and isolation of spatially differentiated markets and would ensure that efficient allocation of resources across space and time is achieved (Nkang et al., 2007). In the fish marketing system, price movements in different markets depend to a large extent on the cross market movement of available catch, which in turn, is governed by the demand and supply factors. The extent of price transmission from one market to the other and its direction are the important aspects to
be looked into, as these would provide valuable information on the degree of integration, and in turn, the efficiency of these markets. In the present paper, the degree of spatial market integration between the major coastal markets in India has been studied using monthly retail price data on important fish species. The study has highlighted the supply side constraints,
which are essentially the major factors responsible for poor integration between the markets.

Data and Methodology
For the study, monthly price data for a ten-year period from January 1998 to December 2007 were
collected on important marine fish species, viz.mackerel, sardine, pomfret and shrimp from the major coastal states of India. The states covered were Andhra Pradesh, Gujarat, Karnataka, Kerala, Maharashtra, Orissa, Tamil Nadu and West Bengal.
The retail markets around major landing centres in each of these states were selected for this purpose. The data were collected through regular and systematic primary surveys conducted by the Central Marine Fisheries Research Institute (CMFRI),
Cochin.
Analytical Framework
Two price series belonging to spatially separated markets are said to be integrated if there exists a long-term equilibrium relationship between them.
The degree of transmission of price signals between these two markets can be obtained by fitting a classical regression model given by Equation (1):
Yt = β0 + β1 Xt + et …(1)
where,
Yt = Price at the dependent market,
Xt = Price at the independent market,
β0 = Constant,
β1 = Long-run elasticity of price transmission, and
et = Error-term.
However, assumptions of the classical regression model necessitate that both Yt and Xt variables should be stationary and the errors should have a zero mean and finite variance. A stationary series is one whose parameters (mean, variance and autocorrelations) are independent of time. Regression between two nonstationary variables may result in spurious relationship with high R2 and t-statistics that appear to be significant, but with the results of having no
economic meaning. Under such circumstances, the series have to be first checked for stationarity. If a time series requires first order differencing to be stationary, then it is said to be I (1), which means integrated of the order one. I (2) series requires
differencing twice to become stationary and so on. If it is verified that both the series are stationary, then the classical regression model would hold good and the β coefficient would
represent the coefficient of price transmission. However, if the two series prove to be non-stationary but integrated of the same order, the validity of regression can be checked by testing the residuals of the regression for stationarity. Engle and Granger
(1987) had demonstrated that, if the residuals from such a regression turn out to be stationary, then the series are co-integrated and there existed a long-run relationship between the two series. Engle-Granger theorem states that if a set of variables are cointegrated
of order (1, 1), then there exits a valid error-correction representation of the data. Converse
of this theorem also holds good, that is, if an errorcorrection model (ECM) provides an adequate
representation of the variables, then they must be co-integrated. However, if the series are integrated of different orders, the regression equations using such variables would be meaningless and it can be concluded that there cannot exist any long-term relationship between the two.
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
Perikanan merupakan salah satu sektor-sektor kunci di India dengan sekitar 6,7 juta orang tergantung pada hal itu untuk mata pencaharian (GoI, 2001). Sektor sedang mengalami transformasi cepat, dari tingkat subsistensi industri jutaan. Produksi ikan (laut dan darat) dari negara telah meningkat dari 0,75 juta ton di tahun 1950-51 6.4 juta ton dalam 2.003-04 (Narayankumar dan Sathiadas, 2006). Pendaratan laut saja yang senilai Rs 13019 crores di tingkat pusat arahan pada tahun 2004, sementara nilai pada titik konsumen akhir diperkirakan Rs 22,653 crores (Sathiadas, 2005). Selama bertahun-tahun, laut ekspor telah substansialsumber penghasilan Valuta Asing ke India exchequer dan karenanya diberikan prioritas.Namun, Perikanan domestik sistem pemasaran di negara telah lama diabaikan karena berbagai alasan. Layak pangsa disebabkan terutama karena sekitar 85 persen dari produksi total ikan yang dikonsumsi dalam negeri. Hal ini, oleh karena itu, penting untuk mengembangkan jaringan yang kuat dari sistem pemasaran yang efisien dalam negeri sehingga sepotong besar negara ikan produksi efisien dikelola dan dikirim ke mengkonsumsimassa, sementara tidak meniadakan saham jatuh tempo nelayan. Pada dasarnya, sistem pemasaran yang efisien adalah salah satu yang mana ada integrasi sempurna pasar dan harga penuh transmisi, dengan harga seketika adjusment untuk perubahan dari dalam atau di luarsistem. Sistem tersebut akan memungkinkan para produsen, perantara, dan konsumen dalam jaringan pemasaranuntuk memperoleh keuntungan maksimum. Ini juga akan membantu dalam penghapusan arbitrase tidak menguntungkan dan isolasi spasial dibedakan pasar dan akan memastikan alokasi sumber daya yang efisien di seluruh ruang dan waktu yang mencapai (Nkang et al., 2007). Ikan sistem pemasaran, pergerakan harga di pasar yang berbeda bergantung sebagian besar pada pergerakan pasar lintas menangkap tersedia, yang pada gilirannya, diatur oleh permintaan dan pasokan faktor. Tingkat harga pengiriman dari satu pasar ke yang lain dan arah adalah aspek yang penting untukakan melihat ke dalam, karena ini akan memberikan informasi berharga pada tingkat integrasi, dan pada gilirannya, efisiensi pasar ini. Dalam tulisan ini, tingkat pasar spasial integrasi antara pesisir pasar utama di India telah diteliti menggunakan data harga eceran bulanan pada spesies ikan yang penting. Studi telah menyoroti sisi penawaran kendala,yang adalah pada dasarnya faktor utama yang bertanggung jawab untuk integrasi miskin antara pasar.Data dan metodologiUntuk penelitian, data harga bulanan selama sepuluh tahun dari Januari 1998 sampai Desember 2007 yangdikumpulkan pada spesies ikan laut yang penting, viz.mackerel, sarden, bawal dan udang dari negara-negara pesisir besar India. Negara-negara tertutup tersebut Andhra Pradesh, Gujarat, Karnataka, Kerala, Maharashtra, Orissa, Tamil Nadu dan Benggala Barat.Pasar retail di sekitar pusat-pusat utama mendarat di setiap negara ini yang dipilih untuk tujuan ini. Data dikumpulkan melalui survei utama teratur dan sistematis dilakukan oleh pusat Marine Perikanan Research Institute (CMFRI),Cochin. Analisis kerangkaDua seri harga milik spasial dipisahkan pasar dikatakan diintegrasikan jika ada keseimbangan hubungan antara mereka.Tingkat transmisi sinyal harga antara dua pasar ini dapat diperoleh dengan pas model regresi klasik yang diberikan oleh persamaan (1):YT = β0 + β1 Xt + et...(1)mana,YT = harga di pasar tergantung,XT = harga di pasar independen,Β0 = konstan,Β1 = jangka panjang elastisitas harga transmisi, danet = Error-istilah.Namun, asumsi model regresi klasik memerlukan bahwa Yt dan Xt variabel harus stasioner dan kesalahan harus nol berarti dan terbatas varians. Serangkaian stasioner adalah salah satu parameter yang (berarti, varians dan autocorrelations) independen dari waktu. Regresi antara dua variabel yang nonstationary dapat menyebabkan hubungan palsu tinggi R2 dengan t-statistik yang muncul secara signifikan, tetapi dengan hasil dari memiliki nomakna ekonomi. Dalam keadaan seperti, seri harus pertama diperiksa untuk stationarity. Jika waktu seri membutuhkan urutan pertama pembedaan menjadi stasioner, maka itu menjadi saya (1), yang berarti terintegrasi dari urutan satu. Saya (2) seri memerlukanpembedaan dua kali untuk menjadi stasioner dan seterusnya. Jika itu adalah diverifikasi bahwa kedua seri stasioner, kemudian model regresi klasik akan terus baik dan koefisien β akanmewakili koefisien harga transmisi. Namun, jika dua seri membuktikan untuk menjadi non-stasioner tetapi terintegrasi sama, validitas regresi dapat diperiksa dengan pengujian residu regresi untuk stationarity. Engle dan Granger(1987) telah menunjukkan bahwa, jika residu dari regresi tersebut berubah menjadi stasioner, maka seri bersama terpadu dan tidak ada hubungan jangka panjang antara dua seri. Teorema Engle-Granger menyatakan bahwa jika satu set variabel cointegratedpesanan (1, 1), kemudian ada keluar representasi berlaku koreksi kesalahan data. ConverseTeorema ini juga memegang baik, itulah, jika model errorcorrection (ECM) menyediakan memadairepresentasi dari variabel, maka mereka harus bersama terpadu. Namun, jika seri yang terintegrasi dari perintah yang berbeda, persamaan regresi menggunakan variabel tersebut akan menjadi tidak bermakna dan dapat disimpulkan bahwa tidak ada hubungan jangka panjang antara dua.
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
The fisheries is one of the key sectors in India with around 6.7 million people dependent on it for livelihood (GoI, 2001). The sector is undergoing fast transformation, from subsistence level to a multimillion industry. The fish production (both marine and inland) of the country has increased from 0.75 million tonnes in 1950-51 to 6.4 million tonnes in 2003-04 (Narayankumar and Sathiadas, 2006). The marine landings alone were valued at Rs 13019 crores at the landing centre level in 2004, while the value at the final consumer point was estimated at Rs 22,653 crores (Sathiadas, 2005). For the past many years, marine exports have been a substantial
source of foreign-exchange earning to India’s exchequer and hence are accorded utmost priority.
However, the domestic fisheries marketing system in the country has long been neglected due to various reasons. It deserves its due share primarily because around 85 per cent of the total fish production is consumed within the country. It is, therefore, important to develop a strong network of efficient marketing system within the country so that a substantial chunk of country’s fish production is efficiently managed and delivered to the consuming
masses, while not negating the due share of the fishermen. Essentially, an efficient marketing system is one where there is a perfect market integration and full price transmission, with instantaneous price adjusment to changes from within or outside the
system. Such a system would enable the producers, middlemen and consumers in the marketing chain
to derive maximum gains. It would also help in elimination of unprofitable arbitrage and isolation of spatially differentiated markets and would ensure that efficient allocation of resources across space and time is achieved (Nkang et al., 2007). In the fish marketing system, price movements in different markets depend to a large extent on the cross market movement of available catch, which in turn, is governed by the demand and supply factors. The extent of price transmission from one market to the other and its direction are the important aspects to
be looked into, as these would provide valuable information on the degree of integration, and in turn, the efficiency of these markets. In the present paper, the degree of spatial market integration between the major coastal markets in India has been studied using monthly retail price data on important fish species. The study has highlighted the supply side constraints,
which are essentially the major factors responsible for poor integration between the markets.

Data and Methodology
For the study, monthly price data for a ten-year period from January 1998 to December 2007 were
collected on important marine fish species, viz.mackerel, sardine, pomfret and shrimp from the major coastal states of India. The states covered were Andhra Pradesh, Gujarat, Karnataka, Kerala, Maharashtra, Orissa, Tamil Nadu and West Bengal.
The retail markets around major landing centres in each of these states were selected for this purpose. The data were collected through regular and systematic primary surveys conducted by the Central Marine Fisheries Research Institute (CMFRI),
Cochin.
Analytical Framework
Two price series belonging to spatially separated markets are said to be integrated if there exists a long-term equilibrium relationship between them.
The degree of transmission of price signals between these two markets can be obtained by fitting a classical regression model given by Equation (1):
Yt = β0 + β1 Xt + et …(1)
where,
Yt = Price at the dependent market,
Xt = Price at the independent market,
β0 = Constant,
β1 = Long-run elasticity of price transmission, and
et = Error-term.
However, assumptions of the classical regression model necessitate that both Yt and Xt variables should be stationary and the errors should have a zero mean and finite variance. A stationary series is one whose parameters (mean, variance and autocorrelations) are independent of time. Regression between two nonstationary variables may result in spurious relationship with high R2 and t-statistics that appear to be significant, but with the results of having no
economic meaning. Under such circumstances, the series have to be first checked for stationarity. If a time series requires first order differencing to be stationary, then it is said to be I (1), which means integrated of the order one. I (2) series requires
differencing twice to become stationary and so on. If it is verified that both the series are stationary, then the classical regression model would hold good and the β coefficient would
represent the coefficient of price transmission. However, if the two series prove to be non-stationary but integrated of the same order, the validity of regression can be checked by testing the residuals of the regression for stationarity. Engle and Granger
(1987) had demonstrated that, if the residuals from such a regression turn out to be stationary, then the series are co-integrated and there existed a long-run relationship between the two series. Engle-Granger theorem states that if a set of variables are cointegrated
of order (1, 1), then there exits a valid error-correction representation of the data. Converse
of this theorem also holds good, that is, if an errorcorrection model (ECM) provides an adequate
representation of the variables, then they must be co-integrated. However, if the series are integrated of different orders, the regression equations using such variables would be meaningless and it can be concluded that there cannot exist any long-term relationship between the two.
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2024 I Love Translation. All reserved.

E-mail: