This paper has reviewed many of the studies on fire and climate intera translation - This paper has reviewed many of the studies on fire and climate intera Indonesian how to say

This paper has reviewed many of the

This paper has reviewed many of the studies on fire and climate interactions in the past few decades. The major findings from these studies include:
 Wildfire emissions can have remarkable impacts on radiative forcing. Smoke particles reduce overall solar radiation absorbed by the earth-atmosphere at local and/or regional scales during individual fire events or burning seasons. Fire emissions of CO2, on the other hand, are one of the important atmospheric CO2 sources and contribute substantially to the global greenhouse effect.
 The radiative forcing of smoke particles can generate significant regional climate effects. It leads to a reduction in surface temperature. Smoke particles mostly suppress cloud and precipitation. Fire events could enhance climate anomalies such as droughts.
 Black carbon in smoke particles plays some different roles in affecting radiation and climate. BC could lead to warming in the middle and lower atmosphere, leading to a more stable atmosphere. BC also plays a key role in the smoke-snow feedback mechanism.
 Interannual variability in area burned is often related to ENSO and various teleconnection patterns. Unfortunately, climate models are limited in their ability to provide information on potential changes regarding ENSO variability and its interaction
with various teleconnections in North America, which limits our ability to discuss future shifts in fire potential beyond just changes in the mean potential. However, the models are improving in this area and useful seasonal to multi-year projections of ENSO, AMO, etc., are probable in the next few years, which will improve prediction of interannual fire variability.  Fires are expected to increase in many regions of the globe
under a changing climate due to the greenhouse effect. Fire potential levels in the US are likely to increase in the Rockies all year long and in the Southeast during summer and fall seasons. Burned areas in the western US could increase by more than 50% by the middle of this century. Many issues remain, which lead to uncertainties in our understanding
of fire-climate interactions. Further studies are needed to begin to reduce these uncertainties. For fire particle emissions, a global picture of all kinds of radiative forcing is needed. It is a challenge considering the significant variability in both space and time scales that characterize smoke emissions, along with the evolution of optical properties as smoke ages, and interactions with atmospheric dynamics and cloud microphysics. Smoke plume height and vertical profiles are important properties for impacts of smoke particles on the atmosphere, including locations of warming layers, stability structure, clouds, and smoke transport. Many simulation studies have been conducted based on assumed profiles. Some recent techniques such as the Multi-angle Imaging SpectroRadiometer (MISR) (e.g., Kahn et al., 2008) could be useful tools to determine these smoke plume properties. BC has received increased attention recently. BC emissions from fires, including emission factors from different fuels, need to be improved. In addition, BC and OC have different optical properties and climate effects. New techniques for measurement, analysis, and modeling are required to help investigate their separate and combined roles. Work remains to be done on the assessment of the greenhouse effects and climate change deriving from fire CO2 emissions. Unlike atmospheric total CO2 concentrations, which have increased relatively steadily since the industrial revolution, fires have significant temporal variability. Fire regimes of a specific region may change dramatically as a result of changes in both climate and human activities. The variability can occur also over a short period. For example, the global carbon emissions in 1998 were 0.8 Pg C yr1 more than the average, but by 2001 they had dropped to 0.4 Pg C yr1 below the average (van der Werf et al., 2010). Thus, it is hard to estimate historical fire CO2 emissions and their impacts. Furthermore, the contribution of wildfire emissions to global atmospheric CO2 increase is more significant over a short period because regrowth of burned lands over a long period will remove some CO2 from the atmosphere. Many indices have been developed to measure fire risk, which is one of the factors for fore occurrence and spread, which is most closely related to climate change. More efforts are needed to build quantitative relationships with actual fire properties such as burned area. Although wildfires occur at local or regional scales,current climate models do not have the capacity to provide consistent and reliable simulation of climate variability at these scales, in particular for precipitation. The risk from mega-fires, which are small probability events and involve complex atmospheric, fuel,and human processes, would become larger under the projected warming climate. Many statistical climate–fire relations and vegetation models have very limited prediction skills for mega-fires. Fuel conditions such as type, loading, and moisture could change at a specific location in response to climate change. They will be also affected by human factors such as urbanization. Comprehensive approaches combining natural and social factors are needed for improving future fire projections. While the strong relationships among atmospheric teleconnection/ SST patterns and wildfire activity are useful for seasonal forecasting applications, their application to climate change scenarios is problematic. Joseph and Nigam (2006) revealed that the climate models used in the IPCC’s Fourth Assessment report currently do a poor job simulating many features of ENSO variability and its interaction with various teleconnections in North America. ENSO-fire relations are valuable for seasonal fire predictions. USDA Forest Service and US National Oceanic and Atmospheric Administration joined research forces recently to develop plans and tools to improve fire weather and climate prediction skills, including exploring the SST-fire relations.
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
Karya ini telah memeriksa banyak dari studi tentang kebakaran dan iklim interaksi dalam beberapa dekade. Temuan-temuan utama dari studi ini termasuk:
Wildfire emisi dapat memiliki dampak yang luar biasa pada memaksa radiasi. Partikel asap mengurangi keseluruhan radiasi matahari diserap oleh atmosfer bumi di lokal dan/atau daerah skala selama kejadian kebakaran individu atau pembakaran musim. Api emisi CO2, di sisi lain, adalah salah satu sumber CO2 atmosfer yang penting dan bersumbangsih bagi efek rumah kaca global.
memaksa radiasi partikel asap dapat menghasilkan efek iklim daerah yang signifikan. Ini menyebabkan penurunan suhu permukaan. Partikel asap kebanyakan menekan awan dan curah hujan. Kejadian kebakaran dapat meningkatkan anomali iklim seperti kekeringan.
hitam karbon dalam partikel asap memainkan beberapa peran yang berbeda dalam mempengaruhi radiasi dan iklim. BC dapat menyebabkan pemanasan di atmosfer menengah dan rendah, mengarah ke suasana yang lebih stabil. BC juga memainkan peran kunci dalam mekanisme umpan asap-salju.
Variabilitas yang interannual di daerah dibakar sering berkaitan ENSO dan berbagai pola teleconnection. Sayangnya, model iklim terbatas dalam kemampuan mereka untuk memberikan informasi tentang potensi perubahan mengenai ENSO variabilitas dan interaksi
dengan berbagai teleconnections di Amerika Utara, yang membatasi kemampuan kita untuk membahas masa depan pergeseran dalam api potensi luar hanya perubahan berarti potensi. Namun, model meningkatkan di daerah ini dan berguna musiman untuk multi-tahun proyeksi ENSO, AMO, dll, yang mungkin dalam beberapa tahun berikutnya, yang akan meningkatkan prediksi interannual api variabilitas. Kebakaran diharapkan untuk meningkatkan di banyak wilayah dunia
di bawah perubahan iklim karena efek rumah kaca. Api potensi tingkat di AS cenderung meningkatkan di Rockies sepanjang tahun dan di Tenggara selama musim panas dan musim gugur. Daerah yang dibakar di Barat Amerika Serikat dapat meningkatkan lebih dari 50% pada pertengahan abad ini. Banyak masalah tetap, yang menyebabkan ketidakpastian dalam pemahaman kita
interaksi iklim api. Studi lebih lanjut diperlukan untuk mulai mengurangi ketidakpastian ini. Emisi partikel api, gambar global semua jenis radiasi memaksa diperlukan. Itu adalah sebuah tantangan yang mempertimbangkan variabilitas yang signifikan dalam ruang dan waktu skala yang mencirikan emisi asap, seiring dengan evolusi sifat optik sebagai asap usia, dan interaksi dengan atmosfer microphysics dinamika dan awan. Asap plume tinggi dan profil vertikal properti penting untuk dampak partikel asap pada suasana, termasuk lokasi pemanasan lapisan, struktur stabilitas, awan, dan asap transportasi. Banyak studi simulasi telah dilakukan berdasarkan profil diasumsikan. Beberapa teknik baru seperti Multi-angle Imaging SpectroRadiometer (MISR) (misalnya, Kahn et al., 2008) bisa menjadi alat yang berguna untuk menentukan sifat-sifat plume asap ini. BC telah menerima perhatian peningkatan baru-baru ini. BC emisi dari kebakaran, termasuk faktor emisi dari bahan bakar yang berbeda, perlu ditingkatkan. Selain itu, BC dan OC memiliki sifat optik yang berbeda dan iklim efek. Teknik-teknik baru untuk pengukuran, analisis, dan pemodelan yang diperlukan untuk membantu menyelidiki peran mereka terpisah dan gabungan. Pekerjaan masih harus dilakukan atas dasar penilaian dari efek rumah kaca dan perubahan iklim yang berasal dari kebakaran emisi CO2. Tidak seperti atmosfer konsentrasi CO2 total, yang telah meningkat relatif terus sejak revolusi industri, kebakaran memiliki variabilitas temporal yang signifikan. Rezim api kawasan tertentu dapat berubah secara dramatis akibat perubahan iklim dan kegiatan manusia. Variabilitas dapat terjadi juga selama periode singkat. Sebagai contoh, emisi karbon global pada tahun 1998 yang Pg C 0.8 yr 1 lebih dari rata-rata, tapi tahun 2001 mereka turun menjadi 0.4 yr Pg C 1 di bawah rata-rata (van der Werf et al., 2010). dengan demikian, sulit untuk memperkirakan emisi CO2 api sejarah dan dampak mereka. Selanjutnya, kontribusi api meningkatkan emisi global CO2 di atmosfer lebih penting selama periode singkat karena pertumbuhan kembali dari tanah yang terbakar selama jangka panjang akan menghapus beberapa CO2 dari atmosfer. Banyak indeks telah dikembangkan untuk mengukur risiko kebakaran, yang merupakan salah satu faktor terjadinya kedepan dan menyebar, yang paling erat terkait dengan perubahan iklim. Lebih banyak usaha yang diperlukan untuk membangun hubungan kuantitatif dengan area properti seperti terbakar api sebenarnya. Meskipun kebakaran hutan terjadi pada skala lokal atau regional,model iklim saat ini tidak memiliki kapasitas untuk menyediakan konsisten dan dapat diandalkan simulasi Variabilitas iklim pada skala ini, khususnya untuk pengendapan. Risiko dari mega-kebakaran yang kecil kemungkinan peristiwa dan melibatkan bahan-bakar atmosfer, kompleks, dan proses manusia, akan menjadi lebih besar di bawah diproyeksikan pemanasan iklim. Banyak hubungan Statistik iklim-api dan vegetasi model memiliki sangat terbatas prediksi keterampilan untuk mega-kebakaran. Bahan bakar kondisi seperti jenis, pemuatan dan kelembaban bisa mengubah lokasi tertentu dalam menanggapi perubahan iklim. Mereka akan juga dipengaruhi oleh faktor-faktor manusia seperti urbanisasi. Pendekatan yang komprehensif yang menggabungkan faktor alam dan sosial yang diperlukan untuk meningkatkan masa depan api proyeksi. Sementara hubungan kuat antara atmosfer teleconnection / SST pola dan aktivitas api yang berguna untuk aplikasi peramalan musiman, aplikasi mereka untuk skenario perubahan iklim bermasalah. Yusuf dan Nigam (2006) mengungkapkan bahwa model iklim digunakan dalam laporan penilaian keempat IPCC saat ini melakukan pekerjaan yang buruk simulasi banyak fitur ENSO variabilitas dan interaksinya dengan berbagai teleconnections di Amerika Utara. ENSO-api hubungan berharga untuk prediksi api musiman. USDA Dinas Kehutanan dan kami Nasional Administrasi Kelautan dan atmosfer penelitian bergabung dengan pasukan baru-baru ini mengembangkan rencana dan alat-alat untuk meningkatkan keterampilan prediksi cuaca dan iklim, termasuk perjalanan menjelajah hubungan SST-api api.
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
This paper has reviewed many of the studies on fire and climate interactions in the past few decades. The major findings from these studies include:
 Wildfire emissions can have remarkable impacts on radiative forcing. Smoke particles reduce overall solar radiation absorbed by the earth-atmosphere at local and/or regional scales during individual fire events or burning seasons. Fire emissions of CO2, on the other hand, are one of the important atmospheric CO2 sources and contribute substantially to the global greenhouse effect.
 The radiative forcing of smoke particles can generate significant regional climate effects. It leads to a reduction in surface temperature. Smoke particles mostly suppress cloud and precipitation. Fire events could enhance climate anomalies such as droughts.
 Black carbon in smoke particles plays some different roles in affecting radiation and climate. BC could lead to warming in the middle and lower atmosphere, leading to a more stable atmosphere. BC also plays a key role in the smoke-snow feedback mechanism.
 Interannual variability in area burned is often related to ENSO and various teleconnection patterns. Unfortunately, climate models are limited in their ability to provide information on potential changes regarding ENSO variability and its interaction
with various teleconnections in North America, which limits our ability to discuss future shifts in fire potential beyond just changes in the mean potential. However, the models are improving in this area and useful seasonal to multi-year projections of ENSO, AMO, etc., are probable in the next few years, which will improve prediction of interannual fire variability.  Fires are expected to increase in many regions of the globe
under a changing climate due to the greenhouse effect. Fire potential levels in the US are likely to increase in the Rockies all year long and in the Southeast during summer and fall seasons. Burned areas in the western US could increase by more than 50% by the middle of this century. Many issues remain, which lead to uncertainties in our understanding
of fire-climate interactions. Further studies are needed to begin to reduce these uncertainties. For fire particle emissions, a global picture of all kinds of radiative forcing is needed. It is a challenge considering the significant variability in both space and time scales that characterize smoke emissions, along with the evolution of optical properties as smoke ages, and interactions with atmospheric dynamics and cloud microphysics. Smoke plume height and vertical profiles are important properties for impacts of smoke particles on the atmosphere, including locations of warming layers, stability structure, clouds, and smoke transport. Many simulation studies have been conducted based on assumed profiles. Some recent techniques such as the Multi-angle Imaging SpectroRadiometer (MISR) (e.g., Kahn et al., 2008) could be useful tools to determine these smoke plume properties. BC has received increased attention recently. BC emissions from fires, including emission factors from different fuels, need to be improved. In addition, BC and OC have different optical properties and climate effects. New techniques for measurement, analysis, and modeling are required to help investigate their separate and combined roles. Work remains to be done on the assessment of the greenhouse effects and climate change deriving from fire CO2 emissions. Unlike atmospheric total CO2 concentrations, which have increased relatively steadily since the industrial revolution, fires have significant temporal variability. Fire regimes of a specific region may change dramatically as a result of changes in both climate and human activities. The variability can occur also over a short period. For example, the global carbon emissions in 1998 were 0.8 Pg C yr1 more than the average, but by 2001 they had dropped to 0.4 Pg C yr1 below the average (van der Werf et al., 2010). Thus, it is hard to estimate historical fire CO2 emissions and their impacts. Furthermore, the contribution of wildfire emissions to global atmospheric CO2 increase is more significant over a short period because regrowth of burned lands over a long period will remove some CO2 from the atmosphere. Many indices have been developed to measure fire risk, which is one of the factors for fore occurrence and spread, which is most closely related to climate change. More efforts are needed to build quantitative relationships with actual fire properties such as burned area. Although wildfires occur at local or regional scales,current climate models do not have the capacity to provide consistent and reliable simulation of climate variability at these scales, in particular for precipitation. The risk from mega-fires, which are small probability events and involve complex atmospheric, fuel,and human processes, would become larger under the projected warming climate. Many statistical climate–fire relations and vegetation models have very limited prediction skills for mega-fires. Fuel conditions such as type, loading, and moisture could change at a specific location in response to climate change. They will be also affected by human factors such as urbanization. Comprehensive approaches combining natural and social factors are needed for improving future fire projections. While the strong relationships among atmospheric teleconnection/ SST patterns and wildfire activity are useful for seasonal forecasting applications, their application to climate change scenarios is problematic. Joseph and Nigam (2006) revealed that the climate models used in the IPCC’s Fourth Assessment report currently do a poor job simulating many features of ENSO variability and its interaction with various teleconnections in North America. ENSO-fire relations are valuable for seasonal fire predictions. USDA Forest Service and US National Oceanic and Atmospheric Administration joined research forces recently to develop plans and tools to improve fire weather and climate prediction skills, including exploring the SST-fire relations.
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: