In Sections 1.4, 4.5, and 5.3, we discussed the binary search tree—one translation - In Sections 1.4, 4.5, and 5.3, we discussed the binary search tree—one Indonesian how to say

In Sections 1.4, 4.5, and 5.3, we d

In Sections 1.4, 4.5, and 5.3, we discussed the binary search tree—one of the principal data structures for implementing dictionaries. It is a binary tree whose nodes
contain elements of a set of orderable items, one element per node, so that all elements in the left subtree are smaller than the element in the subtree’s root, and all
the elements in the right subtree are greater than it. Note that this transformation
from a set to a binary search tree is an example of the representation-change technique. What do we gain by such transformation compared to the straightforward
implementation of a dictionary by, say, an array? We gain in the time efficiency
of searching, insertion, and deletion, which are all in(logn), but only in the average case. In the worst case, these operations are in(n)because the tree can
degenerate into a severely unbalanced one with its height equal ton−1.
Computer scientists have expended a lot of effort in trying to find a structure
that preserves the good properties of the classical binary search tree—principally,
the logarithmic efficiency of the dictionary operations and having the set’s elements sorted—but avoids its worst-case degeneracy. They have come up with two
approaches.
The first approach is of the instance-simplification variety: an unbalanced
binary search tree is transformed into a balanced one. Because of this, such
trees are called self-balancing. Specific implementations of this idea differ
by their definition of balance. AnAVL treerequires the difference between
the heights of the left and right subtrees of every node never exceed 1. A
red-black treetolerates the height of one subtree being twice as large as the
other subtree of the same node. If an insertion or deletion of a new node
creates a tree with a violated balance requirement, the tree is restructured
by one of a family of special transformations calledrotationsthat restore the
balance required. In this section, we will discuss only AVL trees. Information
about other types of binary search trees that utilize the idea of rebalancing
via rotations, including red-black trees andsplay trees, can be found in the
references [Cor09], [Sed02], and [Tar83].
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
Dalam bagian 1.4, 4,5 dan 5.3, kita membahas pohon biner terurut — salah satu data utama struktur untuk menerapkan Kamus. Ini adalah pohon biner node yangmengandung unsur-unsur dari serangkaian item orderable, salah satu elemen per node, sehingga semua elemen dalam subpepohon kiri lebih kecil daripada elemen dalam subpepohon akar, dan semuaunsur-unsur di subpepohon kanan lebih besar dari itu. Perhatikan bahwa transformasi inidari satu set ke sebuah pohon biner terurut adalah contoh dari teknik representasi-perubahan. Apa yang kita peroleh oleh transformasi tersebut dibandingkan dengan jelaspelaksanaan kamus, katakanlah, sebuah array? Kita memperoleh efisiensi waktumencari, penyisipan, dan penghapusan, yang adalah semua dalam (logn), tetapi hanya dalam kasus rata-rata. Dalam kasus terburuk, operasi ini sedang (n) karena pohon dapatmerosot menjadi sangat tidak seimbang dengan ketinggian yang sama ton−1.Ilmuwan komputer telah dikeluarkan banyak usaha dalam berusaha untuk menemukan strukturyang mempertahankan sifat-sifat baik pohon biner terurut klasik-pada prinsipnyalogaritma efisiensi operasional kamus dan memiliki kumpulan unsur-unsur diurutkan — tapi menghindari degenerasi yang terburuk. Mereka telah datang dengan duapendekatan.Pendekatan pertama adalah dari berbagai contoh-penyederhanaan: seimbangPohon biner terurut berubah menjadi yang seimbang. Karena ini, sepertipohon-pohon yang disebut diri menyeimbangkan. Implementasi tertentu ide ini berbedaoleh definisi mereka keseimbangan. AnAVL treerequires perbedaan antaraketinggian subtrees kiri dan kanan dari setiap node tidak pernah melebihi 1. Amerah-hitam treetolerates tinggi satu subpepohon menjadi dua kali lebih besarlain subpepohon node sama. Jika penyisipan atau penghapusan suatu node barumenciptakan sebuah pohon dengan keseimbangan yang melanggar persyaratan, pohon direstrukturisasioleh salah satu keluarga khusus transformasi calledrotationsthat mengembalikankeseimbangan yang diperlukan. Dalam bagian ini, kita akan membahas hanya pohon-pohon AVL. Informasitentang jenis pohon biner terurut yang memanfaatkan ide rebalancingmelalui rotasi, termasuk pohon-pohon merah-hitam andsplay pohon, dapat ditemukan direferensi [Cor09], [Sed02], dan [Tar83].
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: