2.1. Experimental design and proceduresWe study a two-period setting s translation - 2.1. Experimental design and proceduresWe study a two-period setting s Indonesian how to say

2.1. Experimental design and proced

2.1. Experimental design and procedures

We study a two-period setting similar to that of Forsythe et al. (1982) and Friedman et al. (1984). In each experimental session, two double auction markets are operating simultaneously. In each market, one of two assets, A or B, can be traded. We refer to each two-period sequence as a round. Most sessions consist of ten rounds.

At the beginning of every first period of each round (i.e. in each odd-numbered period), every subject is endowed with five units of asset A and five units of asset B. All subjects are also endowed with 20,000 francs (experimental currency) of working capital. The working capital is a loan that must be repaid at the end of the round. Subjects’ endowments of asset and working capital are reinitialized at the beginning of each round.

The only source of intrinsic value for both assets is the dividends that they yield. Both assets pay stochastic dividends at the end of each period. The dividend is the same regardless of who owns the unit. Dividends are paid to a separate account that cannot be used for purchasing assets, but that does count toward final earnings.

In the first period of each round, the dividend of both assets is drawn independently from the set {100, 150, 350, 400} with equal probability on each possible outcome. This makes the expected dividends for both assets equal to 250 in every first period of any round.

In the second period of each round, a shock occurs to either asset A or asset B. Exactly one of the assets is shocked in each round. Each of the two assets is shocked with equal probability. If an asset is shocked, it can not pay the two highest dividend realizations (350 or 400) in the second period of the current round. This means the expected dividend that a shocked asset pays is 125 in the second period. All subjects are informed about which asset is shocked. They are also told that when the shock occurs, the non-shocked asset may be either positively correlated with, negatively correlated with, or independent of the shocked asset, all with equal probability.

If an asset is positively correlated with the shocked asset, it cannot pay the highest possible dividend (400). If an asset is negatively correlated with the shocked asset, it cannot pay the lowest possible dividend (100). Hence, the expected dividend for an asset that is positively (negatively) correlated with the shocked asset is 200 (300) in the second period[7]. If two assets are uncorrelated, then the dividend is, as in first period of any round, drawn from the set {100, 150, 350, 400} with equal probability, making the expected dividend equal to 250 in the second period. The expected value of the non-shocked asset is 250, calculated as (Equation 6). The term 1/3 comes from the fact that there is equal probability that the two assets are positively, negatively, or not correlated.

In each round, there is a 50 percent chance that the computer will randomly select half of the participants as insiders. The insiders know the exact relationship between the assets and thereby the true value of the assets in the second period of the current round[8].

Figure 1 summarizes all possible scenarios in the second period of any round. The same figure is shown to all subjects in the instructions, which also explain in detail how the numbers in the figure are calculated. Subjects are also explicitly told to refer to this graph whenever they need a reminder about the dividend process.
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
2.1. Experimental design and proceduresWe study a two-period setting similar to that of Forsythe et al. (1982) and Friedman et al. (1984). In each experimental session, two double auction markets are operating simultaneously. In each market, one of two assets, A or B, can be traded. We refer to each two-period sequence as a round. Most sessions consist of ten rounds.At the beginning of every first period of each round (i.e. in each odd-numbered period), every subject is endowed with five units of asset A and five units of asset B. All subjects are also endowed with 20,000 francs (experimental currency) of working capital. The working capital is a loan that must be repaid at the end of the round. Subjects’ endowments of asset and working capital are reinitialized at the beginning of each round.The only source of intrinsic value for both assets is the dividends that they yield. Both assets pay stochastic dividends at the end of each period. The dividend is the same regardless of who owns the unit. Dividends are paid to a separate account that cannot be used for purchasing assets, but that does count toward final earnings.In the first period of each round, the dividend of both assets is drawn independently from the set {100, 150, 350, 400} with equal probability on each possible outcome. This makes the expected dividends for both assets equal to 250 in every first period of any round.In the second period of each round, a shock occurs to either asset A or asset B. Exactly one of the assets is shocked in each round. Each of the two assets is shocked with equal probability. If an asset is shocked, it can not pay the two highest dividend realizations (350 or 400) in the second period of the current round. This means the expected dividend that a shocked asset pays is 125 in the second period. All subjects are informed about which asset is shocked. They are also told that when the shock occurs, the non-shocked asset may be either positively correlated with, negatively correlated with, or independent of the shocked asset, all with equal probability.If an asset is positively correlated with the shocked asset, it cannot pay the highest possible dividend (400). If an asset is negatively correlated with the shocked asset, it cannot pay the lowest possible dividend (100). Hence, the expected dividend for an asset that is positively (negatively) correlated with the shocked asset is 200 (300) in the second period[7]. If two assets are uncorrelated, then the dividend is, as in first period of any round, drawn from the set {100, 150, 350, 400} with equal probability, making the expected dividend equal to 250 in the second period. The expected value of the non-shocked asset is 250, calculated as (Equation 6). The term 1/3 comes from the fact that there is equal probability that the two assets are positively, negatively, or not correlated.In each round, there is a 50 percent chance that the computer will randomly select half of the participants as insiders. The insiders know the exact relationship between the assets and thereby the true value of the assets in the second period of the current round[8].Figure 1 summarizes all possible scenarios in the second period of any round. The same figure is shown to all subjects in the instructions, which also explain in detail how the numbers in the figure are calculated. Subjects are also explicitly told to refer to this graph whenever they need a reminder about the dividend process.
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
2.1. Desain dan prosedur eksperimental Kami mempelajari dua periode pengaturan mirip dengan Forsythe et al. (1982) dan Friedman et al. (1984). Dalam setiap sesi eksperimental, dua pasar lelang ganda beroperasi secara bersamaan. Di setiap pasar, salah satu dari dua aset, A atau B, dapat diperdagangkan. Kami mengacu pada setiap urutan dua periode sebagai putaran. Sebagian besar sesi terdiri dari sepuluh putaran. Pada awal setiap periode pertama dari setiap putaran (yaitu di setiap periode ganjil), setiap subjek diberkahi dengan lima unit aset A dan lima unit aset B. Semua mata pelajaran juga diberkahi dengan 20.000 franc (mata uang percobaan) dari modal kerja. Modal kerja adalah pinjaman yang harus dilunasi pada akhir putaran. Wakaf subyek 'aset dan modal kerja yang reinitialized pada awal setiap putaran. Satu-satunya sumber nilai intrinsik untuk kedua aset adalah dividen yang mereka menghasilkan. Kedua aset membayar dividen stochastic pada akhir setiap periode. Dividen adalah sama terlepas dari siapa yang memiliki unit. Dividen dibayarkan ke rekening terpisah yang tidak dapat digunakan untuk membeli aset, tapi itu dihitung penghasilan final. Pada periode pertama dari setiap putaran, dividen dari kedua aset diambil secara independen dari set {100, 150, 350, 400 } dengan probabilitas yang sama pada setiap hasil yang mungkin. Hal ini membuat dividen diharapkan untuk kedua aset sebesar 250 dalam setiap periode pertama babak apapun. Dalam periode kedua setiap putaran, kejutan terjadi untuk aktiva A atau aset B. Tepat salah satu aset terkejut di setiap putaran. Masing-masing dua aset terkejut dengan probabilitas yang sama. Jika aset terkejut, tidak bisa membayar dua realisasi dividen tertinggi (350 atau 400) pada periode kedua babak saat ini. Ini berarti dividen yang diharapkan bahwa aset terkejut membayar adalah 125 pada periode kedua. Semua mata pelajaran diberitahu tentang yang aset terkejut. Mereka juga mengatakan bahwa ketika guncangan terjadi, aset non-kaget mungkin baik berkorelasi positif dengan, berkorelasi negatif dengan, atau independen dari aset terkejut, semua dengan probabilitas yang sama. Jika aset berkorelasi positif dengan aset terkejut, itu tidak bisa membayar mungkin dividen tertinggi (400). Jika aset berkorelasi negatif dengan aset terkejut, tidak dapat membayar dividen serendah mungkin (100). Oleh karena itu, dividen yang diharapkan untuk aset yang positif (negatif) berkorelasi dengan aset terkejut adalah 200 (300) pada periode kedua [7]. Jika dua aset tidak berkorelasi, maka dividen adalah, seperti dalam periode pertama babak apapun, yang diambil dari set {100, 150, 350, 400} dengan probabilitas yang sama, membuat dividen yang diharapkan sama dengan 250 pada periode kedua. Nilai yang diharapkan dari aset non-kaget adalah 250, dihitung sebagai (Persamaan 6). Istilah 1/3 berasal dari fakta bahwa ada probabilitas yang sama bahwa dua aset secara positif, negatif, atau tidak berkorelasi. Pada setiap putaran, ada kesempatan 50 persen bahwa komputer akan secara acak memilih setengah dari peserta sebagai orang dalam. Orang dalam mengetahui hubungan yang tepat antara aset dan dengan demikian nilai sebenarnya dari aset pada periode kedua putaran saat [8]. Gambar 1 merangkum semua skenario yang mungkin dalam periode kedua putaran apapun. Angka yang sama ditampilkan untuk semua mata pelajaran dalam instruksi, yang juga menjelaskan secara rinci bagaimana angka-angka dalam gambar dihitung. Subyek juga secara eksplisit mengatakan untuk merujuk pada grafik ini kapan saja mereka perlu pengingat tentang proses dividen.















Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: