Figures 3-6 report the distribution of trading prices in our experimen translation - Figures 3-6 report the distribution of trading prices in our experimen Indonesian how to say

Figures 3-6 report the distribution

Figures 3-6 report the distribution of trading prices in our experiments. The RE and PI prices (the dashed lines) are calculated based on the information available in the market. In the first period of a given round, the RE price is always 437.5 francs. In every second period of the round, the shocked asset is worth 125 francs on average. The value of the non-shocked asset depends on the presence of inside information. If such information exists, then under the RE model prices reveal its value. The value is 250 francs in the absence of insiders.

Figure 3 displays the distribution of median trading prices in the first period of each round. We do not report assets A and B separately because there is no material difference between the two assets in the first periods and in principle, subjects should treat the two assets equally in every first period as there is no way to know which asset will be shocked in that period. The figure also reports the data from the first and second halves of the sessions separately. This allows any effect of experience to appear in the figure. Prices in the first periods are consistently lower than the RE/PI level. The difference is not reduced in the late periods of the sessions. The trading volumes in odd periods, measured by turnover (Van Boening et al., 1993)[13], are separately reported in figures below.

Figure 4 shows that in the second period of a round, the shocked asset prices are close to RE/PI levels. Consistency with the models increases as traders gain more experience. Figure 4 also reports the turnover of this asset both in odd periods (light gray) and in even periods (dark gray).

Figure 5 shows the median trading prices in the second period when insiders exist. We group the data by trader’s experience with a specific asset relationship. We say that insider information is revealed if prices are closer (measured by MSE) to the RE predicted level than to that of PI. Figure 5 shows that prices tend to reveal the insider information. This is apparent from the signs of the differences between periods with positive, negative, and no correlation. Information regarding turnover is reported on the bottom panel of this figure.

Lastly, Figure 6 illustrates situations where information mirages appear. We use a simple but rather stringent standard to define an information mirage: it occurs in a period if there are no insiders and if the median trading price is closer to the mirage level (either 200 or 300 francs) than to the RE/PI level, and the MSE is smaller when observed prices are compared with mirage prices than with RE/PI prices. Turnover information is reported on the right panel of this figure.

Overall, there are five main patterns in the price data:

In 19 out of 41 total periods without insiders, an information mirage occurs.

Information mirages that correspond to high-price levels, referred to as negative mirages in Figure 6, are more likely to occur than those that occur at low prices. Put differently, prices are more likely to reflect a belief that the non-shocked asset is negatively correlated with the shocked asset. This makes the non-shocked asset appear to be worth more (300 francs, instead of 200 in the case of positive correlation).

In most cases, insider information is revealed.

The degree of revelation of insider information depends on the relationship between the two assets. It is more likely to be revealed when the relationship is negative, followed by uncorrelated, followed in turn by positive correlation. The corresponding RE predicted prices are 300, 250, and 200 francs, respectively.

First period prices within a round are lower than predicted by the RE and PI models.

In the next subsections, we analyze the price discovery process in detail. We begin by studying the price discovery process for the even periods, the second period of each round, and then for the odd periods in the next subsection. Recall that prior to the start of any even period, all traders know which asset will be shocked.
3.2. Analysis of price discovery process: even periods

To measure how close trading prices converge to the RE price level, we report the MSE[14] in Table III. We divide each session into halves in order to measure changes as subjects become more experienced. If the MSE values become smaller in the late periods of a session, it is an indication that a convergence process toward a benchmark price level is occurring.

We report RMSE, root MSE, in the second-to-last row of Table IV. RMSE serves as a measures of absolute deviation of pricing error from the RE/PI level. Late-period RMSEs with respect to the RE price are much lower than early periods RMSE in most cases. For instance, when the non-shocked asset is positively correlated with the shocked asset, the error declines almost by half from 75 to 42. For negatively correlated asset and independent asset, the improvement is small[15].

To measure convergence within a period, we also divide
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
Figures 3-6 report the distribution of trading prices in our experiments. The RE and PI prices (the dashed lines) are calculated based on the information available in the market. In the first period of a given round, the RE price is always 437.5 francs. In every second period of the round, the shocked asset is worth 125 francs on average. The value of the non-shocked asset depends on the presence of inside information. If such information exists, then under the RE model prices reveal its value. The value is 250 francs in the absence of insiders.Figure 3 displays the distribution of median trading prices in the first period of each round. We do not report assets A and B separately because there is no material difference between the two assets in the first periods and in principle, subjects should treat the two assets equally in every first period as there is no way to know which asset will be shocked in that period. The figure also reports the data from the first and second halves of the sessions separately. This allows any effect of experience to appear in the figure. Prices in the first periods are consistently lower than the RE/PI level. The difference is not reduced in the late periods of the sessions. The trading volumes in odd periods, measured by turnover (Van Boening et al., 1993)[13], are separately reported in figures below.Gambar 4 menunjukkan bahwa di masa kedua putaran, harga aset terkejut dekat RE / PI tingkat. Konsistensi dengan model meningkat sebagai pedagang mendapatkan lebih banyak pengalaman. Gambar 4 juga melaporkan omset aset ini dalam periode aneh (abu-abu terang) dan bahkan periode (abu-abu gelap).Gambar 5 menunjukkan median perdagangan harga di babak kedua ketika ada orang dalam. Kami kelompok data trader pengalaman dengan hubungan aset tertentu. Kita mengatakan bahwa informasi insider dinyatakan jika harga lebih dekat (diukur oleh UMK) untuk RE meramalkan tingkat daripada yang PI. Gambar 5 menunjukkan bahwa harga cenderung untuk mengungkapkan informasi insider. Hal ini terlihat dari tanda-tanda perbedaan antara periode dengan positif, negatif, dan tidak ada korelasi. Informasi mengenai omset dilaporkan pada panel bawah dari angka ini.Akhirnya, gambar 6 menggambarkan situasi di mana informasi dengan Mirage muncul. Kami menggunakan standar yang sederhana namun agak ketat untuk mendefinisikan mirage informasi: itu terjadi dalam periode jika ada orang dalam tidak dan jika harga perdagangan rata-rata lebih dekat ke tingkat mirage (200 atau 300 Franc) daripada untuk RE / PI tingkat, dan UMK lebih kecil ketika diamati harga dibandingkan dengan harga mirage daripada dengan RE / PI harga. Omset informasi dilaporkan pada panel kanan angka ini.Secara keseluruhan, ada lima pola utama dalam data harga: Dalam 19 dari 41 total periode tanpa insiders, mirage informasi terjadi. Information mirages that correspond to high-price levels, referred to as negative mirages in Figure 6, are more likely to occur than those that occur at low prices. Put differently, prices are more likely to reflect a belief that the non-shocked asset is negatively correlated with the shocked asset. This makes the non-shocked asset appear to be worth more (300 francs, instead of 200 in the case of positive correlation). In most cases, insider information is revealed. The degree of revelation of insider information depends on the relationship between the two assets. It is more likely to be revealed when the relationship is negative, followed by uncorrelated, followed in turn by positive correlation. The corresponding RE predicted prices are 300, 250, and 200 francs, respectively. First period prices within a round are lower than predicted by the RE and PI models.In the next subsections, we analyze the price discovery process in detail. We begin by studying the price discovery process for the even periods, the second period of each round, and then for the odd periods in the next subsection. Recall that prior to the start of any even period, all traders know which asset will be shocked.3.2. Analysis of price discovery process: even periodsTo measure how close trading prices converge to the RE price level, we report the MSE[14] in Table III. We divide each session into halves in order to measure changes as subjects become more experienced. If the MSE values become smaller in the late periods of a session, it is an indication that a convergence process toward a benchmark price level is occurring.We report RMSE, root MSE, in the second-to-last row of Table IV. RMSE serves as a measures of absolute deviation of pricing error from the RE/PI level. Late-period RMSEs with respect to the RE price are much lower than early periods RMSE in most cases. For instance, when the non-shocked asset is positively correlated with the shocked asset, the error declines almost by half from 75 to 42. For negatively correlated asset and independent asset, the improvement is small[15].To measure convergence within a period, we also divide
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
Angka 3-6 laporan distribusi harga perdagangan dalam percobaan kami. RE dan PI harga (garis putus-putus) dihitung berdasarkan informasi yang tersedia di pasar. Pada periode pertama putaran diberikan, harga RE selalu 437,5 franc. Dalam setiap periode kedua putaran, aset terkejut bernilai 125 franc rata-rata. Nilai aset non-kaget tergantung pada kehadiran informasi dalam. Jika informasi tersebut ada, kemudian di bawah RE harga model yang mengungkapkan nilainya. Nilai adalah 250 franc dalam ketiadaan orang dalam. Gambar 3 menampilkan distribusi harga perdagangan median pada periode pertama dari setiap putaran. Kami tidak melaporkan aset A dan B secara terpisah karena tidak ada perbedaan materi antara dua aset pada periode pertama dan pada prinsipnya, mata pelajaran harus memperlakukan dua aset sama di setiap periode pertama karena tidak ada cara untuk mengetahui aset akan terkejut dalam periode tersebut. Angka tersebut juga melaporkan data dari bagian pertama dan kedua dari sesi secara terpisah. Hal ini memungkinkan efek dari pengalaman tampil pada gambar. Harga pada periode pertama secara konsisten lebih rendah dari tingkat RE / PI. Perbedaannya tidak berkurang pada periode akhir sesi. Volume perdagangan pada periode yang aneh, diukur dengan omset (Van Boening et al., 1993) [13], secara terpisah dilaporkan dalam angka di bawah ini. Gambar 4 menunjukkan bahwa pada periode kedua putaran, harga aset terkejut dekat dengan RE / tingkat PI. Konsistensi dengan model meningkatkan sebagai pedagang mendapatkan lebih banyak pengalaman. Gambar 4 juga melaporkan omset aset ini baik dalam periode aneh (abu-abu) dan bahkan periode (abu-abu gelap). Gambar 5 menunjukkan harga perdagangan median pada periode kedua ketika orang dalam ada. Kami kelompok data dengan pengalaman trader dengan hubungan aset tertentu. Kami mengatakan bahwa informasi orang dalam mengungkapkan jika harga lebih dekat (diukur dengan MSE) ke RE diprediksi tingkat daripada yang dari PI. Gambar 5 menunjukkan bahwa harga cenderung mengungkapkan informasi orang dalam. Hal ini terlihat dari tanda-tanda perbedaan antara periode dengan positif, negatif, dan tidak ada korelasi. Informasi mengenai omset dilaporkan pada panel bawah angka ini. Terakhir, Gambar 6 menggambarkan situasi di mana fatamorgana informasi muncul. Kami menggunakan standar sederhana tetapi lebih ketat untuk menentukan fatamorgana informasi: itu terjadi dalam jangka waktu jika tidak ada orang dalam dan jika harga perdagangan median lebih dekat ke tingkat fatamorgana (baik 200 atau 300 franc) daripada RE / tingkat PI , dan MSE lebih kecil ketika harga diamati dibandingkan dengan harga fatamorgana daripada dengan harga RE / PI. Informasi omset dilaporkan pada panel sebelah kanan angka ini. Secara keseluruhan, ada lima pola utama dalam data harga: Dalam 19 dari 41 jumlah periode tanpa orang dalam, sebuah fatamorgana informasi terjadi. Fatamorgana Informasi yang sesuai dengan tingkat harga tinggi, disebut untuk fatamorgana negatif pada Gambar 6, lebih mungkin terjadi daripada yang terjadi pada harga rendah. Dengan kata lain, harga lebih mungkin untuk mencerminkan keyakinan bahwa aset non-kaget berkorelasi negatif dengan aset terkejut. Hal ini membuat aset non-kaget tampak lebih berharga (300 franc, bukan 200 dalam kasus korelasi positif). Dalam kebanyakan kasus, informasi insider terungkap. Tingkat wahyu informasi insider tergantung pada hubungan antara dua aktiva. Hal ini lebih mungkin akan terungkap ketika hubungan negatif, diikuti oleh berkorelasi, diikuti pada gilirannya dengan korelasi positif. RE sesuai prediksi harga 300, 250, dan 200 franc, masing-masing. Harga Periode pertama dalam putaran lebih rendah dari yang diperkirakan oleh RE dan PI model. Dalam subseksi berikutnya, kita menganalisis proses penemuan harga secara rinci. Kita mulai dengan mempelajari proses penemuan harga untuk bahkan periode, periode kedua dari setiap putaran, dan kemudian untuk periode aneh pada subseksi berikutnya. Ingat bahwa sebelum dimulainya setiap bahkan periode, semua pedagang tahu yang aset akan terkejut. 3.2. Analisis proses penemuan harga: periode bahkan Untuk mengukur seberapa dekat harga perdagangan konvergen ke tingkat harga RE, kami melaporkan MSE [14] pada Tabel III. Kami membagi setiap sesi menjadi dua bagian untuk mengukur perubahan sebagai subyek menjadi lebih berpengalaman. Jika nilai-nilai MSE menjadi lebih kecil pada periode akhir sesi, itu merupakan indikasi bahwa proses konvergensi menuju tingkat harga patokan terjadi. Kami melaporkan RMSE, akar MSE, di baris kedua-untuk-terakhir dari Tabel IV. RMSE berfungsi sebagai tindakan penyimpangan mutlak kesalahan harga dari tingkat RE / PI. Akhir-periode RMSEs sehubungan dengan harga RE jauh lebih rendah dari awal periode RMSE dalam banyak kasus. Misalnya, ketika aset non-kaget berkorelasi positif dengan aset terkejut, kesalahan menurun hampir setengahnya dari 75 ke 42. Untuk aset berkorelasi negatif dan aset independen, perbaikan kecil [15]. Untuk mengukur konvergensi dalam jangka waktu , kami juga membagi




























Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: